More info for the terms:
phase,
shrub,
treeSitka spruce, as one of the most important timber species and components
of old-growth habitat, has recently been the center of many management
concerns. Proposals for changes in timber harvest areas and methods
have been explored by Nyberg and others [
43] and Schoen and Kirchhoff
[
51]. They provide in-depth information and management alternatives.
Wildlife habitat: Even-aged management of the species results in
reduced habitat for the black-tailed deer. Shrub fields created after
clearcutting are of limited use to deer in the winter. The depth of
snow accumulation is greater, and snow persists longer in the clearcuts,
reducing the time available for browsing. The forage in clearcuts is
less digestible than that grown in the shade of the preharvest stands.
Also, the large amount of slash resulting from clearcutting old-growth
Sitka spruce impedes movement of large ungulates, especially during
winter migration. Lastly, once the regeneration has reached canopy
closure (20 to 30 years), the understory production is greatly reduced
for at least the next 100 years, compared to old-growth stands with
their various stages of regeneration [
19,
25].
Alaback [
2] studied ways to reduce the negative impact of clearcutting
on Sitka deer. Thinning the stands prior to canopy closure (less than
25 years) seems to be the best method for areas already cut. Thinning
to 12 x 12 feet (3.5 x 3.5 m) spacing results in the most diverse
vegetation. Once canopy closure has occurred (greater than 30 years),
uneven-aged management practices can result in the creation of gaps in
the canopy, which in turn will allow for a more diverse understory [
3].
Damaging agents: Sitka spruce is susceptible to Sitka spruce weevil, or
white pine weevil (Pissodes strobi)), spruce aphid (Elatobium
abietinum), spruce beetle (Dendroctonus rufipennis), and root rot by
Armillaria millea and Heterobasidian annosum [
24].
The Sitka spruce weevil has such a detrimental effect on Sitka spruce in
the lower portion of its range, from southern British Columbia to
northern California, that Sitka spruce is not actively managed for
regeneration there. The F1 generation of the hybrid, Lutz spuce, yields
a tree 100 percent resistant to weevil attack, but growth rate is
sacrificed. Back-crossing the F1 generation with Sitka spruce increases
the growth rate, but up to 50 percent of the progeny are susceptible to
weevil attack [
41]. Also, although Lutz spruce is less susceptible to
the Sitka spruce weevil, it is more susceptible than Sitka spruce to the
spruce beetle [
29].
Sitka spruce is susceptible to wind throw, which can account for up to
80 percent of the mortality within stands. Regeneration from gap phase
replacement, however, is rapid [
15].
Control: Chemical shrub control is often required to regenerate Sitka
spruce successfully following harvest [
18,
36].