dcsimg

Kartoffelvirus Y ( German )

provided by wikipedia DE

Kartoffelvirus Y (wissenschaftlich Potato virus Y, PVY) ist die Typus-Spezies (Art) der Gattung Potyvirus pflanzenpathogener Viren aus der Familie Potyviridae. Kartoffelvirus Y ist eines der wichtigsten Pflanzenviren, die die Kartoffelproduktion beeinflussen.

Einzelne Stämme von PVY infizieren viele wirtschaftlich wichtige Pflanzenarten in der Familie der Nachtschattengewächse (Solanaceae). Dazu gehören neben der Kartoffel (Solanum tuberosum) auch Tabak (Nicotiana tabacum), Tomate (Solanum lycopersicum) und Paprika (Capsicum annuum).[3]

Das Ausmaß der Schäden an den Kulturen wird bestimmt durch den PVY-Stamm, der die Pflanzen infiziert, die Viruslast, den Zeitpunkt der Infektion sowie die Toleranz des Wirts gegenüber dem Virus. Die Resistenz der Wirte gegenüber PVY-Infektionen ist in vielen Fällen gering.[4]

Eine PVY-Infektion von Kartoffelpflanzen (Solanum tuberosum) führt je nach Virusstamm zu einer Vielzahl von Symptomen. Das mildeste dieser Symptome ist ein Produktionsverlust, das schädlichste jedoch ist die Kartoffelringfäule[5] („Ringnekrose der Kartoffelknollen“, englisch potato tuber necrotic ringspot disease, PTNRD). Nekrotische Pusteln (en. ringspots) machen die Kartoffeln unverkäuflich und können daher zu erheblichen Einkommenseinbußen in der Landwirtschaft führen.[6] Die Infektion eines Kartoffelfeldes mit PVY kann letztlich zu 10–100 % Ertragsverlusten führen.[4] PVY ist damit das möglicherweise zerstörerischste aller Kartoffelviren.[7] Eine weitere durch einen PVY-Stamm hervorgerufene Kartoffelkrankheit ist die Strichelkrankheit.

Beim Tabak wird die Tabakrippenbräune durch einen PVY-Stamm hervorgerufen.

PVY wird übertragen durch Blattläuse als Vektoren, kann aber auch im Saatgut (Pflanzkartoffeln) dormant (ruhend) verweilen. Die Verwendung der gleichen Kartoffellinie für die Produktion von Pflanzkartoffeln über mehrere aufeinanderfolgende Generationen kann daher zu einem progressiven Anstieg der Viruslast und damit zu Ernteverlusten führen. Daneben kann PVY auch mechanisch durch Maschinen, Werkzeuge, Beschädigung der Pflanzen beim Begehen des Feldes oder der Ernte übertragen werden.

Beschreibung

 src=
Schemazeichnung eines Virions der Gattung Potyvirus, Seitenansicht
 src=
Schema­zeichnung eines Poty­virus-Virions (Detail).[8][Anm. 1]

Die Virionen von Potyvirus bestehen aus unbehüllten filamentösen Strukturen, die 680–900 nm lang und 11–15 nm breit sind.[9] Das Potyvirus-Kapsid besteht aus etwa 2.000 Kopien des Hüllproteins (en. coat protein, CP).[10]

Das Genom von PVY ist unsegmentiert (monopartit) – das Kapsid beinhaltet einen RNA-Einzelstrang (en. single strand RNA, ssRNA) positiver Polarität mit einer Länge von 10 kb (Nukleotidbasen). Diese genomische RNA beinhaltet eine nicht-translatierte 5'-terminale Region (5'-NTR oder 5'-UTR) sowie einen 3'-Poly-A-Schwanz.[11][12] Das Genom enthält einen einzelnen erweiterten offenen Leserahmen (en. extended open reading frame) und wirkt direkt als mRNA. Die 144 Nukleotide umfassende 5'-NTR ist besonders reich an Adenin-Basen und hat nur wenige Guanin-Basen. Anstelle einer konventionellen Cap-Struktur ist das 5'-NTR mit einem Protein (Viral genome linked protein, VPg) assoziiert, das vermutlich als „Enhancer“ der Transkription wirkt.[13]

Die 5'-Leader-Sequenz hat eine interne ribosomale Eintrittsstelle (internal ribosome entry site, IRES) und cap-unabhängige Translationsregulationselemente (cap-independent translation regulatory elements, CIREs →CITE).[14] Die IRES steuert die cap-unabhängige Translation durch einen ähnlichen Mechanismus wie bei Eukaryoten.[15] Der erweiterte offene Leserahmen kodiert für ein 350 kDa (Kilo-Dalton) an Polyprotein. Dieses Polyprotein ist ein Präkursor-Protein und wird durch Virus-eigene Proteasen (NIa, HC-Pro und P1) proteolytisch prozessiert, wodurch es eine ko- und posttranslationale Spaltung erfährt, durch die schließlich mehrere multifunktionale Proteine entstehen. Zu diesem Prozess gehören die folgenden Proteine:[10]

  • P1 (P1-Protein),
  • HCPro (Helper Component Proteinase),
  • P3 (P3-Protein),
  • 6K1 (6-kDa-Protein 1),
  • CI (Cylindrical Inclusion),
  • 6K2 (6-kDa-Protein 2),
  • VPg (Viral Protein genome-linked),
  • NIaPro (Nuclear Inclusion Protein a, Proteinase domain),
  • NIb (Nuclear Inclusion Protein b) und das
  • CP (Coat Protein, Hüllprotein).

Wirte, Stämme und Symptome

 src=
Kartoffel, die Symptome der Kartoffelringfäule[5] („Ringnekrose der Kartoffelknollen“, en. potato tuber necrotic ringspot disease, PTNRD) zeigend
 src=
Symptome des Kartoffelvirus Y auf Nicotiana tabacum

Es hat sich gezeigt, dass je nach Kartoffelsorte, Umweltfaktoren und Symptomen verschiedene Stämme und Isolate der Spezies PVY verantwortlich sein können.[16] Typische Symptome sind Rauheit, Agglomeration (Zusammenkleben) und Verdrehen der Blätter sowie Falten des Blattrandes; Zwergwuchs; Nekrose der Blattvenen, nekrotische Flecken, Nekrose der Blätter und Stielstreifen. Die umfangreiche biologische, serologische und molekulare Variabilität von PVY-Isolaten macht ihre Klassifizierung als bestimmte Stämme besonders schwierig. Das Auftreten einer Vielzahl von Symptomen und das Auftauchen des nekrotischen Stammes PVYNTN (auch YNTN-Stamm)[17] haben zu einer Suche nach zuverlässigeren Klassifizierungswerkzeugen als der einfachen serologischen Identifizierung geführt. Traditionell werden drei Hauptstämme von PVY anerkannt:

  • PVYC (auch YC-Stamm)[18],
  • PVYN (oder YN-Stamm)[19] und
  • PVYO (alias YO-Stamm).[20]

PVYC, ursprünglich bekannt als Kartoffelvirus C (en. Potato Virus C), wurde als erstes erkannt und in den 1930er Jahren identifiziert.[21] PVYC induziert überempfindliche Reaktionen bei einer Vielzahl von Kartoffelsorten. Zu diesen Reaktionen gehört etwa die Bildung von milden Mosaikmustern oder Streifen (en. stipple streak).[22] Im Gegensatz zu den anderen Stämmen von PVY sind einige PVYC-Stämme durch Blattläuse nicht übertragbar (en. non-aphid transmissible).[23] Frühere Studien von Visser et al. identifizierten keines der Isolate auf der Nordhalbkugel der Erde als PVYC, aber es wurde berichtet, dass es in Südafrika vorkommt.[24][25][26]

Ein zweiter Stamm von PVY ist PVYN.[27] Dieser Stamm wurde zuerst bei Tabakpflanzen beschrieben, die in der Nähe von Kartoffelpflanzen wachsen.[28] PVYN verursacht im Allgemeinen milde Symptome an den Blättern und leichte oder keine Schäden an den Knollen, bei anfälligen Kartoffelsorten bewirkt es jedoch Blattnekrosen.

Der häufigste Stamm von PVY ist PVYO (Typusstamm). Die Infektion einer Kartoffelpflanze mit dem PVYO-Stamm führt zu leichten Knollenschäden, ggf. Mosaiksymptome, verursacht aber keine Blattnekrosen. Die Infektion einer Kartoffelpflanze mit dem Stamm PVYO führt zu leichten Knollenschäden und verursacht keine Blattnekrosen.[29]

Sowohl PVYN als auch PVYO sind durch Blattläuse übertragbar und kommen in Südafrika vor. In Europa wurde nachgewiesen, dass sich diese beiden Stämme zu PVYNTN (alias YNTN-Stamm, PVYNTN)[17] rekombiniert haben.[30][31][22] Diesem neuen Stamm PVYNTN wird die Eigenschaft zugeschrieben, die Kartoffelringfäule[5] („Ringnekrose der Kartoffelknollen“, en. potato tuber necrotic ringspot disease, PTNRD) auszulösen.[30] Knollen, die durch PTNRD geschädigt sind, sind unverkäuflich. Eine Infektion durch PVYNTN führt somit zu größeren wirtschaftlichen Auswirkungen als eine Infektion durch die oben genannten anderen Stämme. Die immunologische Methode ELISA (Enzyme Linked Immunosorbent Assay) kann PVYNTN nicht von diesen beiden anderen Virusstämmen unterscheiden. Darüber hinaus reagieren nicht alle PVYN-Isolate mit dem spezifischen PVYN-Antikörper, aber einige PVYO-Isolate.

Mischinfektionen von PVYN als auch PVYO sind häufig, wobei das genetische Material rekombinieren kann, do dass Hybridrassen entstehen.[22] Neben PVYNTN ist dies PVYN:O (alias PVYN:O).

Weitere PVY-Stämme, die verschiedene Pflanzen befallen, sind nach NCBI:

  • Physalis floridana potyvirus
  • Spiraea potyvirus

PVY-Stämme können zudem mit anderen Kartoffelviren wie Kartoffelvirus X (PVX) und Kartoffelvirus A (PVA) interagieren und in ihrer Wirkung gegenseitig verstärken, was dann zu größeren Verlusten führt. Auch nach der Lagerung sind nekrotische Symptome bei den Knollen häufig verstärkt.

Schäden

Eine in den letzten Jahren beobachtete Zunahme der Infektion von Kartoffelpflanzen mit Viren hat etwa in der südafrikanischen Kartoffelerzeugung zu erheblichen Verlusten geführt. Die erhöhte Infektionsrate kann dort auf mehrere Faktoren zurückgeführt werden. Dazu gehören ein deutlicher Rückgang der Wirksamkeit und der Verabreichung von Insektiziden zur Kontrolle der Vektoren (Blattläuse), die Verwendung von infizierten Pflanzkartoffeln beim Anbau, falsche Bewässerungs- und Anbaumethoden sowie das Fehlen einer empfindlichen, schnellen und zuverlässigen Nachweismethode.[32] Ein Anstieg der Durchschnittstemperaturen in den Wintern als Folge der globalen Erwärmung hat auch zu einem Anstieg der Anzahl von Blattläusen geführt, was wiederum zu einem Anstieg der Virusverbreitung nach sich zog.[32]

Bekämpfung und Kontrolle

PVY wird durch Selektion gesunder Klone und Verwerfen kranker Pflanzen (englisch roguing) während des Samenvermehrungsprozesses kontrolliert. Es gibt resistente Sorten.

Siehe auch

Literatur

Anmerkungen

  1. a b Das Material wurde von dieser Quelle kopiert, die unter einer Creative Commons Attribution 4.0 International License verfügbar ist.

Einzelnachweise

  1. a b c d e ICTV: ICTV Master Species List 2019.v1, New MSL including all taxa updates since the 2018b release, March 2020 (MSL #35)
  2. Mahmoud Hamdy Abd El-Aziz: The Importance of Potato virus Y Potyvirus, in: J Plant Sci Phytopathol. 2020; 4, S. 9–15.
  3. J. G. McDonald, R. P. Singh (1996). Host range, symptomology and serology of isolates of Potato virus Y (PVY) that share properties with both the PVYN and PVYO strain groups. In: Amer. Pot. J. 73, S. 309–314
  4. a b M. Warren, F. Krüger, A. S. Schoeman (2005): Potato virus Y (PVY) and potato leaf roll virus (PLRV), Literature review for potatoes South Africa. Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of Pretoria.
  5. a b c Dirk Stephan: Molekulare Charakterisierung von Beet mild yellowing virus (BMYV) und Beet chlorosis virus (BChV) sowie Selektion von BMYV Amlicon-transgenen Nicotioana benthamiana, Dissertation im Fachbereich Gartenbau der Uni Hannover, Februar 2005
  6. Jahresbericht 1992, OpenAgrar
  7. C. W. Ward, D. D. Shukla (1991): Taxonomy of potyviruses: current problems and possible solutions. In: Intervirology 32, S. 269–296, doi:10.1159/000150211, PMID 1657820
  8. Stephen J. Wylie, Alice Kazuko Inoue-Nagata, Jan Kreuze, Juan José López-Moya, Kristiina Mäkinen, Kazusato Ohshima, Aiming Wang: Positive-sense RNA Viruses> Potyviridae, in: ICTV Virus Taxonomy Profile: Potyviridae, Journal of General Virology, 98: S. 352–354.
  9. J. R. Edwardson (1947). Some Properties of the Potato Virus Y Group. Florida Agricultural Experiment Stations Monograph Series, 4: 398.
  10. a b N. J. Talbot (2004). Plant-Pathogen Interaction. Blackwell Publishing. CRC Press.
  11. W. G. Dougherty, J. C. Carrington. (1988). Expression and function of potyviral gene products. In: Annu. Rev. Phytopathol., 26: S. 123–143, doi:10.1146/annurev.py.26.090188.001011
  12. Van der Vlugt, R., Allefs, S., De Haan, P. and Goldbach, R. (1989): Nucleotide sequence of the 3’-terminal region of potato virus YN RNA. In: J. Gen. Virol., 70, 1. Januar 1989, S. 229–233, doi:10.1099/0022-1317-70-1-229
  13. J. C. Carrington, D. D. Freed (1990): Cap-independent enhancement of translation by a plant potyvirus 5’ nontranslated region. In: J. Virol., 64: S. 1590–1597. doi:10.1128/JVI.64.4.1590-1597.1990, PMID 2319646, PMC 249294 (freier Volltext)
  14. B. J. Dallaire, P. J. Charest, Y. Devantier, J.-F. Laliberté (1994): Evidence for an internal ribosome entry site within the 5' non- translated region of turnip mosaic potyvirus RNA. In: J. Gen. Virol., 75: S. 3157–3165, PMID 7964625, doi:10.1099/0022-1317-75-11-3157
  15. M. Niepel, D. R. Gallie (1999): Identification and characterization of the functional elements within the tobacco etch virus 5' leader required for cap-independent translation. In: J. Gen. Virol., 79: S. 897–904, PMID 10516014, PMC 112940 (freier Volltext), doi:10.1128/JVI.73.11.9080-9088.1999
  16. S. Delgado-Sanchez, Raymond G. Grogan| (1970). Potato virus Y. CMI/AAB Descriptions of plant viruses. Nr. 37. CMI/AAB, Kew, Surrey, England, 4 Seiten
  17. a b NCNI: Potato virus Y strain NTN (no rank)
  18. NCBI: Potato virus Y strain C (no rank)
  19. NCBI: Potato virus Y strain N (no rank)
  20. NCBI: Potato virus Y strain O (no rank) und Potato virus Y strain YO (no rank)
  21. R. N. Salaman (1930). Virus diseases of potato: Streak. In: Nature 126, S. 241.
  22. a b c Stefan Flatken: [https://d-nb.info/983881103/34 d-nb.info Auftretern, Variabilität und Rekombination von Kartoffelviren unter besonderer Berücksichtigung des Kartoffelvirus Y (Potatovirus Y) in transgenen und nicht-transgenen Kartoffeln], Dissertation der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover, November 2006
  23. B. Blanco-Urgoiti, M. Tribodet, S. Leclere, F. Ponz, C. Perez dé San Roman, F. J. Legorburu, C. Kerlan. (1998): Characterization of potato potyvirus y isolates from seed potato batches. Situation of the NTN, Wilga and Z isolates. In: Eur. J. Pl. Path. 104, S. 811–819, doi:10.1023/A:1008698719645
  24. Johan Christiaan Visser, Dirk Uwe Bellstedt, A. H. Rothmann: An assessment of recombination patterns in South African strains of potato virus Y (PVY). In: Archives of Virology; Wien Band 154, Nr. 12,Dezember 2009, Epub 28. Oktober 2009, S. 1891-900, doi:10.1007/s00705-009-0525-3
  25. A. A. Brunt (2001). Potyviruses. In: G. Loebenstein, P. H. Berger, A: A. Brunt, R. H. Lawson (Hrsg.): Virus and virus-like diseases of potatoes and production of seed-potatoes. Kluwer Academic Publishers, Dordrecht, S. 77–86.
  26. J. A. De Bokx, H. Huttinga (1981). Potato virus Y. In: CMI/AAB Descriptions of plant viruses. 37: Nr. 242. Wellesbourne, UK: Association of Applied Biologists, 6 Seiten. Via Web-Archiv vom 28. Oktober 2010.
  27. Kenneth M. Smith, R. W. G. Dennis (1940): Some notes on suspected variant of Solanum virus 2 (Potato virus Y). In: Annals of Applied Biology. Band 27, Nr. 1, Februar 1940, doi:10.1111/j.1744-7348.1940.tb07478.x
  28. J. Crosslin, P. Hamm, P. Shiel, D. Hane, C. Brown, P. Berger (2005): Serological and Molecular Detection of Tobacco Veinal Necrosis Isolates of Potato Virus Y (PVYN) from Potatoes Grown in the Western United States. In: Amer. J. Pot. Res., 82, S. 263–269, doi:10.1007/BF02871955
  29. N. Boonham, K. Walsh, M. Hims, S. Preston, J. North, I. Barker (2002): Biological and sequence comparisons of Potato virus Y isolates associated with potato tuber necrotic ringspot disease. In: Pl. Path. 51, S. 117–126, doi:10.1046/j.1365-3059.2002.00681.x
  30. a b N. Boonham, K. Walsh, S. Preston, J. North, P. Smith, I. Barker, I. (2002): The detection of tuber necrotic isolates of Potato Virus Y, and the accurate discrimination of PVYO, PVYN and PVYC strains using RT-PCR. In: J. Virol. Meth. 102, S. 103–112, doi:10.1016/S0166-0934(02)00008-3
  31. J. H. Lorenzen, T. Meacham, P. H. Berger, P. J. Shiel, J. M. Crosslin, P. B. Hamm, H. Kopp (2006): Whole genome characterization of Potato virus Y isolates collected in the western USA and their comparison to isolates from Europe and Canada. In: Arch. Virol. 151, S. 1055–1074, doi:10.1007/s00705-005-0707-6
  32. a b Coetsee, J. (2005). Virusse bedreig hele aartappelbedryf, Landbouweekblad, 61637: S. 44–45 (afrikaans).
 title=
license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Kartoffelvirus Y: Brief Summary ( German )

provided by wikipedia DE

Kartoffelvirus Y (wissenschaftlich Potato virus Y, PVY) ist die Typus-Spezies (Art) der Gattung Potyvirus pflanzenpathogener Viren aus der Familie Potyviridae. Kartoffelvirus Y ist eines der wichtigsten Pflanzenviren, die die Kartoffelproduktion beeinflussen.

Einzelne Stämme von PVY infizieren viele wirtschaftlich wichtige Pflanzenarten in der Familie der Nachtschattengewächse (Solanaceae). Dazu gehören neben der Kartoffel (Solanum tuberosum) auch Tabak (Nicotiana tabacum), Tomate (Solanum lycopersicum) und Paprika (Capsicum annuum).

Das Ausmaß der Schäden an den Kulturen wird bestimmt durch den PVY-Stamm, der die Pflanzen infiziert, die Viruslast, den Zeitpunkt der Infektion sowie die Toleranz des Wirts gegenüber dem Virus. Die Resistenz der Wirte gegenüber PVY-Infektionen ist in vielen Fällen gering.

Eine PVY-Infektion von Kartoffelpflanzen (Solanum tuberosum) führt je nach Virusstamm zu einer Vielzahl von Symptomen. Das mildeste dieser Symptome ist ein Produktionsverlust, das schädlichste jedoch ist die Kartoffelringfäule („Ringnekrose der Kartoffelknollen“, englisch potato tuber necrotic ringspot disease, PTNRD). Nekrotische Pusteln (en. ringspots) machen die Kartoffeln unverkäuflich und können daher zu erheblichen Einkommenseinbußen in der Landwirtschaft führen. Die Infektion eines Kartoffelfeldes mit PVY kann letztlich zu 10–100 % Ertragsverlusten führen. PVY ist damit das möglicherweise zerstörerischste aller Kartoffelviren. Eine weitere durch einen PVY-Stamm hervorgerufene Kartoffelkrankheit ist die Strichelkrankheit.

Beim Tabak wird die Tabakrippenbräune durch einen PVY-Stamm hervorgerufen.

PVY wird übertragen durch Blattläuse als Vektoren, kann aber auch im Saatgut (Pflanzkartoffeln) dormant (ruhend) verweilen. Die Verwendung der gleichen Kartoffellinie für die Produktion von Pflanzkartoffeln über mehrere aufeinanderfolgende Generationen kann daher zu einem progressiven Anstieg der Viruslast und damit zu Ernteverlusten führen. Daneben kann PVY auch mechanisch durch Maschinen, Werkzeuge, Beschädigung der Pflanzen beim Begehen des Feldes oder der Ernte übertragen werden.

license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Potato virus Y

provided by wikipedia EN

Potato virus Y (PVY) is a plant pathogenic virus of the family Potyviridae, and one of the most important plant viruses affecting potato production.

PVY infection of potato plants results in a variety of symptoms depending on the viral strain. The mildest of these symptoms is production loss, but the most detrimental is 'potato tuber necrotic ringspot disease' (PTNRD). Necrotic ringspots render potatoes unmarketable and can therefore result in a significant loss of income. PVY is transmissible by aphid vectors but may also remain dormant in seed potatoes. This means that using the same line of potato for production of seed potatoes for several consecutive generations will lead to a progressive increase in viral load and subsequent loss of crop.

An increase in potato plant infection with viruses over the past few years has led to considerable losses to the South African potato industry. The increased rate of infection may be attributed to several factors. These include a marked decrease in the effectiveness and administration of chemicals used in vector control, the use of infected seed potatoes in cultivation, incorrect irrigation and farming methods as well as a lack of a sensitive, rapid and reliable method of detection.[1] An increase in the average temperature of winters as a consequence of global warming has also led to an increase in aphid numbers, which in turn has led to an increase in viral distribution.[1]

Potato virus Y hosts, strains and symptoms

Potato illustrating necrotic ringspot disease

PVY belongs to the genus Potyvirus, the largest genus of plant viruses and possibly the most destructive one in potato crops.[2] The genus includes more than 200 species that bring about significant losses in the agricultural arena.[3] PVY infects many economically important plant species. These include potato (Solanum tuberosum), tobacco (Nicotiana tabacum), tomato (Solanum lycopersicum) and pepper (Capsicum spp.).[4] The level of damage to crop is determined by the strain of PVY infecting the plants, the viral load, the time at which infection occurs as well as the tolerance the host possesses toward the virus.[5] Resistance to PVY infection by hosts is low in many cases. Infection of a potato field with PVY may ultimately result in 10-100% loss in yield.[5]

It has been shown that the PVY has different isolates according to the symptoms they induce in various potato plant species.[6] Extensive biological, serological and molecular variability of PVY isolates makes the classification of isolates as particular strains particularly difficult. Occurrence of a variety of symptoms and the emergence of the necrotic PVYNTN has led to a search for more reliable classification tools than simple serological identification. Traditionally three chief strains of PVY are recognized: PVYC, PVYN and PVYO. PVYC, originally known as Potato Virus C, was the first to be recognized and was identified in the 1930s.[7] PVYC induces hypersensitive responses in a wide range of potato cultivars. These reactions include the formation of mild mosaic patterns or stipple streak. Unlike the other strains of PVY, some PVYC strains are non-aphid transmissible.[8] Previous studies by Visser et al.[9] did not identify any of the local isolates as being PVYC but it has been reported to occur to in South Africa.[10][11] A second strain of PVY is PVYN.[12] This strain was described in tobacco plants growing close to potato plants.[13] PVYN results in leaf necrosis and mild or even no damage to the tubers. The ordinary strain of PVY is denoted as PVYO. Infection of a potato plant with the PVYO strain results in mild tuber damage and does not cause leaf necrosis.[14] Both PVYN and PVYO are aphid transmissible and occur in South Africa. In Europe these two strains have been shown to have recombined to form PVYNTN.[15][16] The PVYNTN has been accredited with the ability to induce potato tuber necrotic ringspot disease (PTNRD).[15] Tubers damaged by PTNRD become unmarketable and infection by PVYNTN thus results in a larger economic impact than infection by the other strains.

Potato virus Y transmission

PVY may be transmitted to potato plants through grafting, plant sap inoculation and through aphid transmission. The most common manner of PVY infection of plant material in the field is through the aphid, and although aphids on their own can directly damage potato plants, it is their role as viral vectors which has the greatest economic impact.[17][18][19] In cold climates aphids spend the winter either as wingless aphids giving birth to live young (viviparae) or as eggs. Hosts such as weeds and other crops serve as breeding grounds for these aphids and form a temporary area of colonization before the aphids migrate to the potato fields.[18] In moderate climates, such as in South Africa, aphids are thought to reproduce asexually on weeds, other crops, indigenous plants and garden plants. This means that there are a number of aphids present year-round. The importance in effective and stringent monitoring of aphid populations is stressed in a review by Radcliffe and Ragsdale (2002) as PVY virions are introduced to potato fields almost solely by winged aphids from a virus source outside these fields. Wingless aphids have not yet been linked to the spread of PVY in potato fields.[20]

The green peach aphid (Myzus persicae) has been found to be most effective in its role as viral vector,[5][17][21] but others such as Aphis fabae, Aphis gossypii, Aphis nasturtii, Macrosiphum euphorbiae, Myzus (Nectarosiphon) certus, Myzus (Phorodon) humuli and Rhopalosiphum insertum are also strongly associated with viral transmission.[17][21] The Agricultural Research Council-Vegetable and Ornamental Plant Institute (ARC-VOPI) 6 of South Africa identified twenty five species of aphid able to function as PVY vectors.[22] The efficiencies of some of these aphids to function as PVY vectors were also established (Ragsdale et al., 2001) and were found to vary between the different species. In South Africa, Aphis fabae, Aphis gossypii and Aphis nasturtii are the most common and efficient PVY vectors found in the field.[5] Apart from being classed according to efficiency as vectors, aphids can also be divided into two subgroups, namely colonizing and non-colonizing species. Colonizing aphids are aphids which reproduce and establish themselves on potato plants, specifically, while non-colonizing aphids do not reproduce nor establish colonies on potato plants. Colonizing aphids are better adapted to life on potato plants and are thus generally considered as better PVY vectors than non-colonizing aphids. Noncolonizing aphids do not primarily feed on potato plants but do occasionally feed on them while searching for a more suitable host. Their lower efficiency as PVY vector is cancelled out by the sheer numbers in which they occur.[19][23] Because of this, all aphids present in and around potato fields must be considered as possible vectors and their numbers carefully monitored.

Transmission of PVY by aphids occurs in a non-persistent, non-circulative manner which suggests a less intimate interaction between virion and vector than is the case of circulative virions.[24] The fact that the virions are transmitted in a non-persistent fashion means that viral replication does not occur within the aphid vector and that, unless the aphid feeds on infected plants, it loses its ability to infect plants after two to three feedings.[5][25] The virions attach to the aphid stylet in a matter of seconds and may remain infectious for four to seventeen hours.[26][27] The distance over which the virions can be transmitted is limited due to the short period for which they remain infectious.[23] Although the short life span outside plants inhibits long-distance viral transmission, it does not reduce the transmission efficiency bestowed by the quick rate of viral acquisition and inoculation within a field.

Upon entrance into the plant cell, the virus coat protein disassembles and releases its RNA genome. The viral RNA serves as mRNA, and although little is known about the translation thereof, it is believed that the 5’ non-coding region functions as an enhancer of translation.[28] The translated mRNA results in a polyprotein which is processed into mature proteins. Each polyprotein is then cleaved into ten different proteins which are believed to be multifunctional. These proteins, along with host proteins, assemble to form a replication complex. This complex performs negative-strand RNA synthesis, using the positive strand of viral RNA as a template. Once the additional RNA copies have been produced, they code for the synthesis of various proteins, as mentioned before, as well as coat proteins. These coat proteins will now enclose the newly formed genomes to give rise to new virions. It has been suggested that enclosure of the newly formed virions is initiated by the interaction of the coat proteins with the 5’terminus and that the coat protein is built up towards the 3’terminus.[29] The entire process of viral replication occurs within the endoplasmic reticulum. These newly synthesized viral particles are subsequently transported through the plasmodesmata to adjacent plant cells via several assisting potyvirus proteins. Distribution of viruses within the plant occurs according to the source-sink relationship between maturing and growing tissues.[30] Virus concentration throughout the plant is high and this greatly increases the chance of uptake by aphids. Infection of plants by potyviruses can be varied in the symptoms shown. Infection can include veinal necrosis, mosaic symptoms as well as leaf malformation (Boonham et al., 2002). Infected plants that do not show symptoms may have infected canopies and will yield lower quality products than their healthy counterparts.

Potato – PVYNTN interaction

Since PVYNTN causes great loss in potato production, the research of potato – potato virus YNTN interaction is important. Sensitive potato cultivars respond to PVYNTN inoculation with development of typical symptoms. On inoculated leaves 5 – 7 days after inoculation chlorotic and necrotic ringspots develop. As the virus spreads through the plant the systemic symptoms develop on uninoculated leaves. 10 days after inoculation wrinkles and mosaic chlorosis appear, leading to a palm tree appearance (leaf drop).

The viral defense mechanisms of plants will primarily try to restrict the movement of the virus. In failing this, it may attempt to induce cell death in infected tissue, thereby preventing the spread of virions.[31] Although the precise mechanism of disease induction by potyviruses in plants is unknown, it is known that these viruses cause a significant shutdown of host gene expression during viral replication.[32][33][34]

Physiological changes in potato plants as a response to PVYNTN infection were intensively studied. At early stages of infection, meaning first 12 hours, photosynthesis related genes, genes involved in perception, signalling and defence response were shown to be differentially expressed.[34] 24 h after inoculation the amount of salicylic acid increased.[35]

A disruption in gene expression disrupts the normal cellular function of cells which could be the cause of the physical symptoms that the plant demonstrates. At the time of symptoms development, research on interaction between susceptible potato cultivar and PVYNTN showed changes in cytokinin level.[36] In inoculated leaves showing symptoms modifications in chloroplast structure and size,[37] lower chlorophyll levels and differential activity of soluble and ionically-bound peroxidases[38] were detected.

At later stages of PVYNTN infection total protein concentration increased in sensitive potato cultivar while no such pronounced changes were observed in tolerant and moderately tolerant potato cultivars.[39] Gene expression studies revealed changes in expression of genes for heat-shock proteins, catalase, β-1,3-glucanase and genes involved in photosynthesis.[33]

Molecular description of Potato virus Y

Potyvirus virions consist of non-enveloped filamentous structures that are 680 – 900 nm in length and 11 to 15 nm in width.[40] Morphologically the potyvirus capsid consists of approximately 2 000 copies of coat protein (CP).[30]

The capsid encapsulates a single strand of positive sense RNA which is in the order of 10 kb in length and has a non-translated 5’-terminal region (5’-NTR) as well as a 3’-poly-A tail.[41][42] The positive sense genome contains a single extended open reading frame and acts directly as mRNA. The 144 nucleotide 5’-NTR is particularly rich in adenine residues and has very few guanine residues. Rather than a conventional cap structure, the 5’NTR is associated with a Viral genome linked protein (VPg) which is said to act as an enhancer of transcription.[28]

The 5’-leader sequence has an internal ribosome entry site (IRES) and cap-independent translation regulatory elements (CIREs).[43] The IRES directs cap-independent translation through a mechanism similar to that used by eukaryotes.[44] The extended open reading frame encodes for a 350 kDa polyprotein. This polyprotein is proteolytically processed by viral proteases (NIa, HC-Pro and P1) and undergoes co- and post-translational cleavage to yield several multi-functional proteins. These include the following: P1 (P1 Protein), HCPro (Helper Component Proteinase), P3 (P3 Protein), 6K1 (6-kDa Protein 1), CI (Cylindrical Inclusion), 6K2 (6-kDa Protein 2), VPg (Viral Protein genome-linked), NIaPro (Nuclear Inclusion Protein a, Proteinase domain), NIb (Nuclear Inclusion Protein b) and the CP (Coat Protein).[30]

Diagnostic techniques for detection of Potato virus Y

ELISA

In the past, crops were inspected visually to determine whether or not they were disease free. Visual inspection was also used as a basis for seed certification. Determination of viral status through visual inspection is incredibly difficult as the symptoms may be masked or the infection latent.[23] As a result, post season tests and inspections were introduced. These tests involved the cultivation of previously harvested material in greenhouses. The resulting plants were inspected for a more accurate estimate of viral status. Although this method of screening did offer some degree of monitoring of viral presence it was subjective and highly ineffective. Enzyme-linked immunosorbent assay (ELISA) screening of crops and seed potatoes replaced visual inspection in the early 1970s. The use of ELISA offered routine diagnostic laboratories a quick, effective and sensitive method of screening for a wide range of potato plant viruses.

Detection of pathogens using ELISA relies on the interaction between the antigen and specific antibodies and has become a popular and cost-effective means of routine detection. In an ELISA the solid phase can be coated with the sample of interest containing the antigen.[45] The efficiency to which the antigen binds to the solid phase is dependent on temperature, length of exposure as well as concentration.[45] Solid phases used include nitrocellulose membranes, paper, glass, agarose and polystyrene or polyvinylchloride microtiter plates. Microtiter plates are the most widely used solid phase because they are easy to handle, allow for automation and for analysis using microtiter plate readers. A drawback of these plates is that they are highly absorptive and this increases the incidence of non-specific binding of components used in the ELISA. Non-specific binding to the plates is reduced through the use of buffers containing proteins such as casein and non-ionic detergents such as Tween 20. After coating, excess sample is removed and the plate typically treated with a 1% casein containing solution. Subsequent to this the solid phase is treated with antibodies raised against the antigen of interest. After each incubation step the plate is washed with Tween 20 containing PBS. These washing steps are aimed to wash away any non-specifically bound components.[46] Nonspecifically bound components are less strongly bound than the specific bound ones. Detection is achieved either through the addition of an enzyme-coupled antibody or the addition and detection of a biotinylated antibody. In a system using an enzyme-coupled antibody the subsequent addition of an appropriate substrate results in the formation of a colour proportional to the amount of antigen.[46] Alternatively the plate can be coated with antibody followed by incubation with the sample that is to be detected. This, in turn, can be detected as described above and is then referred to as the double antibody sandwich (DAS) ELISA. Both of these systems, however, have a disadvantage in that coupling of the enzyme to the antibody may result in steric hindrance which in turn may result in a loss in function of the antibody and/or the enzyme.[47] This may be overcome through the use of a biotin-avidin or biotin-streptavidin bridge. In this type of system biotin is coupled to the antibody. The biotin molecule has no influence on the working of the antibodies and is easily detectedusing avidin or streptavidin conjugated to a suitable enzyme. Streptavidin has an extremely high affinity for biotin which results in even a higher degree of specificity than a system in which the enzyme is coupled directly the antigen. To establish whether or not the antigen is present, a substrate specific for the enzyme used is added. The enzyme then converts the substrate to a coloured product and the colour intensity can be correlated to the amount of antibodies bound and thus the amount of antigen present. A DAS-ELISA has the advantage that it can increase the specificity of the ELISA and reduce the occurrence of non-specific binding. As a result, the DAS-ELISA principle is commonly employed in ELISA’s for the detection of plant pathogens in plant sap without prior purification of the pathogen.

The ELISA is considered to be a safe, inexpensive and rapid method for detection of plant viruses. The inexpensive nature and relative simplicity thereof allows for it to be used as a workhorse within the agricultural sector and is used to screen thousands of samples per year. Unfortunately ELISAs are not completely failsafe. Virus levels within potato tubers, which are screened by ELISA for use as seed potatoes, are normally low while the tubers are dormant. ELISA detection of viruses in these potatoes is difficult and absorbance values may fall below the set cut-off value. For this reason, seed tuber screening is performed on sprouting rather than dormant tubers. Although this results in more reliable readings than direct tuber testing, it does delay the certification of seed potatoes.[48] Another disadvantage of an immuno-based detection method is that changes at the gene level may have an influence on the immunogenicity of the antigen to be detected. In terms of potato plant viruses, mutations within the CP gene may cause the CP to undergo conformational changes rendering antibodies produced against the previously present virus less effective.

RT-PCR

Reverse transcriptase polymerase chain reaction (RT-PCR) has become a powerful and effective method for detection of potato plant viruses within potato plant material and even dormant potatoes. Only a minute piece of plant material is required for analysis using RT-PCR. Considering the protocol described within this thesis, 0.1 g of plant material is enough for 14 500 separate reactions. During a RT-PCR specific target RNA sequences are amplified exponentially into DNA copies. For this to occur, however, the RNA of the virus must first be transcribed to DNA by means of a reverse transcriptase polymerase. This polymerase synthesizes a DNA strand using the RNA as template. This results in a DNA/RNA complex. For synthesis of a DNA strand from the RNA template only the reverse primer is required since the RNA is a single strand arranged from 5’ to 3’. Subsequently, the newly synthesized DNA strand is used as a template for traditional PCR.

Different types of reverse transcriptase polymerases are available to suit different needs and reaction conditions. Reverse transcriptase enzymes commonly used include AMV RT, SuperScript III, ImProm-II, Omniscript, Sensiscript and Tth RT. At the end of the RT step the polymerase enzyme is heatactivated. It could also be that the reverse transcriptase polymerase and DNA polymerase is one and the same enzyme and that the enzyme only requires a DNA polymerase activation step after the RT step. An example of such an enzyme is Tth polymerase. This enzyme has both RNA-dependent reverse transcriptase and DNA-dependent polymerase activity. However, the active center of the DNA polymerase is covered by dedicated oligonucleotides, called aptamers. At temperatures below the optimal reaction temperature of the DNA-dependent polymerase component of Tth remains covered by the aptamers. At these temperatures the Tth enzyme only synthesizes a DNA copy of the RNA template. Once the reaction temperature is raised to 95 °C, the aptamers are removed and the DNA-dependent polymerase component will start to amplify the target sequence.

PCR amplification of the DNA target occurs in three steps: denaturation, annealing and extension.[46] Each of these steps occur at a specific temperature for a fixed period of time. Denaturation is normally allowed to occur between 90 and 95 °C and leads to the dissociation of DNA strands. After this the reaction is cooled to between 40 and 70 °C to allow the primers to associate with their respective target sequences. This step is known as the annealing step and is primer specific. The temperature at which the primers anneal is critical. Too high temperatures would not allow the primers to associate with the DNA, resulting in no or poor amplification. Too low annealing temperature would ultimately lead to non-specific binding of the primers and non-specific amplification.[46] Primers bound to the regions flanking the target DNA provide 3’-hydroxyl groups for DNA polymerase catalyzed extension. The most commonly used DNA polymerase is Taq, a thermo-stable enzyme isolated from the thermophilic bacterium, Thermus aquaticus. The DNA polymerase synthesizes new DNA strands along the template strands, using the primers as starting points. During the extension step the strands are amplified beyond the target DNA. This means that each newly synthesized strand of DNA will have a region complementary to a primer. There is an exponential increase in the amount of DNA produced as the three above mentioned steps are repeated in a cyclic fashion. In a traditional PCR these steps might be repeated 20 to 55 times. A problem, however, with PCR amplification is that the temperature required for DNA strand dissociation also results in DNA polymerase denaturation. This is partially overcome by the bioengineering of polymerases which are more thermal stable and have longer half-lives.

Even though RT-PCR is technically more difficult to perform and more expensive than ELISA, it has the ability to allow for the detection of low viral loads. RT-PCR is considered to be 102 to 105 fold more sensitive than traditional ELISA.[49] RT-PCR also allows for the detection of several viral targets in the same reaction through the use of several primer combinations. This is called multiplexing. Although multiplexing is technically more demanding than a traditional simplex reaction it allows for a higher throughput in that a single sample can be tested for several viral strains in a single reaction. Primers used for multiplexing are chosen in such a manner that they result in amplicons of various sizes. This allows for post RT-PCR analysis using gel electrophoresis. Although RT-PCR saves time, allows for multiplexing and is more sensitive than ELISA, the reagents and instrumentation needed are expensive and require a higher level of technical expertise. Also, end product analysis using gel electrophoresis is laborious, relatively more expensive, time consuming and does not lend itself to automation. For these reasons the use of RT-PCR for routine screening is not feasible and has not replaced ELISA. It does, however, provide the industry with the opportunity to screen borderline cases, especially in the case of seed potato certification.

Quantitative PCR

In most traditional PCRs the resulting products are analyzed after the PCR has been completed. This is called end-point analysis and is normally qualitative of nature rather than being quantitative. For this sort of analysis, products are mostly analyzed on an agarose gel and visualized using ethidium bromide as a fluorescent dye. Direct correlation between signal strength and initial sample concentration is not possible using end-point analysis since PCR efficiency decreases as the reaction nears the plateau phase. Quantitative PCR, however, offers an accurate and rapid alternative to traditional PCR. Quantitative PCR offers the researcher the opportunity to amplify and analyze the product in a single tube using fluorescent dyes. This is known as homogeneous PCR. During a quantitative PCR the increase in fluorescence is correlated with the increase in product. Through the use of different specific, dyes quantitative PCR can be used to distinguish between different strains of a virus and even to detect point mutations. The major advantage of quantitative PCR is that analysis of resulting products using gel electrophoresis is not required. This means that quantitative PCR can be implemented as a high-throughput technique for sample screening.

Quantitative PCR has been described for detection[50] and discrimination of PVYO and PVYN isolates[51][52] and for reliable discrimination between PVYNTN and PVYN isolates.[53]

See also

Notes and references

  1. ^ a b Coetsee, J. (2005). Virusse bedreig hele aartappelbedryf, Landbouweekblad, 61637: 44-45.
  2. ^ Ward, C.W. and Shukla, D.D. (1991). Taxonomy of potyviruses: current problems and possible solutions. Intervirology, 32: 269-296.
  3. ^ Jawaid, A. Khan A.J and Dijkstra J. (2002). Plant Viruses as Molecular Pathogens. Food Products Press, The Haworth Press Inc., N.Y.
  4. ^ McDonald, J.G. and Singh, R.P. (1996). Host range, symptomology and serology of isolates of Potato virus Y (PVY) that share properties with both the PVYN and PVYO strain groups. Amer. Pot. J., 73: 309- 314.
  5. ^ a b c d e Warren, M., Krüger, K. and Schoeman, A.S. (2005). Potato virus Y (PVY) and potato leaf roll virus(PLRV): Literature review for potatoes South Africa. Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of Pretoria.
  6. ^ Delgado-Sanchez, S. and Grogan, R.G. (1970). Potato virus Y. CMI/AAB Descriptions of plant viruses. 37: CMI/AAB, Kew, Surrey, England, 4 pp.
  7. ^ Salaman, R.N. (1930). Virus diseases of potato: Streak. Nature, 126: 241.
  8. ^ Blanco-Urgoiti, B., Tribodet, M., Leclere, S., Ponz, F., Perez dé San Roman, C., Legorburu, F.J. and Kerlan, C. (1998). Characterization of potato potyvirus y isolates from seed potato batches. Situation of the NTN, Wilga and Z isolates. Eur. J. Pl. Path., 104: 811-819.
  9. ^ Visser, J.C., Rothmann, A.H. and Bellstedt, D.U. (Unpublished). An assessment of recombination patterns in South African strains of potato virus Y (PVY). Honours thesis.
  10. ^ Brunt, A.A. (2001). Potyviruses. In: Loebenstein G., Berger, P.H., Brunt, A.A. and Lawson, R.H. (eds), Virus and virus-like diseases of potatoes and production of seed-potatoes. Kluwer Academic Publishers, Dordrecht, pp 77-86.
  11. ^ De Bokx, J.A. and Huttinga, H. (1981). Potato virus Y. In: CMI/AAB Descriptions of plant viruses 37: 242. Wellesbourne, UK: Association of Applied Biologists. 6pp. Web Archive 2010-10-28.
  12. ^ Smith, K.M. and Dennis, R.W.G. (1940): Some notes on suspected variant of Solanum virus 2 (Potato virus Y). In: Annals of Applied Biology. Vol. 27, Issue 1. February 1940. doi:10.1111/j.1744-7348.1940.tb07478.x
  13. ^ Crosslin, J., Hamm, P., Shiel, P., Hane, D., Brown, C. and Berger, P. (2005). Serological and Molecular Detection of Tobacco Veinal Necrosis Isolates of Potato Virus Y (PVYN) from Potatoes Grown in the Western United States. Amer. J. Pot. Res., 82: 263-269.
  14. ^ Boonham, N., Walsh, K., Hims, M., Preston, S., North, J. and Barker, I. (2002). Biological and sequence comparisons of Potato virus Y isolates associated with potato tuber necrotic ringspot disease. Pl. Path., 51: 117-126.
  15. ^ a b Boonham, N., Walsh, K., Preston, S., North, J., Smith, P. and Barker, I. (2002). The detection of tuber necrotic isolates of Potato Virus Y, and the accurate discrimination of PVYO, PVYN and PVYC strains using RT-PCR. J. Virol. Meth., 102: 103–112.
  16. ^ Lorenzen, J.H., Meacham, T., Berger, P.H., Shiel, P.J., Crosslin, J.M., Hamm, P.B. and Kopp, H. (2006). Whole genome characterization of Potato virus Y isolates collected in the western USA and their comparison to isolates from Europe and Canada. Arch. Virol., 151: 1055-1074.
  17. ^ a b c Halbert, S.E., Corsini, D.L. and Wiebe, M.A. (2003). Potato virus Y transmission efficiency for some common aphids in Idaho. Amer. J. Pot. Res., 80: 87-91.
  18. ^ a b Radcliffe, E.B. and Ragsdale, D.W. (2002). Aphid-transmitted potato viruses: The importance of understanding vector biology. Amer. J. Pot. Res. 79: 353-386.
  19. ^ a b Radcliffe, E.B. (1982). Insect pests of potato. Ann. R. Ento., 27: 173-204.
  20. ^ Ragsdale, D.W., Radcliffe, E.B., DiFonzo, C.D. (1994). Action thresholds for an aphid vector of potato leaf roll virus, pp. 99-110. In: Zehnder, G.W., Powelson, M.L., Jansson, R.K. and Raman, K.V. [ed.], Advances in potato pest biology and management. American Phytopathological Society, Minnesota, USA.
  21. ^ a b Van Hoof, H.A. (1980). Aphid vectors of potato virus YN. Neth. J. Pl. Path., 86: 159.
  22. ^ Thompson, G.J. (1997). Study and control of virus disease of potatoes. In: Landbounavorsingsraad Roodeplaat: Aartappelnavorsing 1996/1997. Agricultural Research Council, Pretoria.
  23. ^ a b c Robert, Y., Woodford, J.A.T. and Ducray-Bourdin, D.G. (2000). Some epidemiological approaches to the control of aphid-borne virus diseases in seed potato crops in northern Europe. Vir. Res. 71: 33-47.
  24. ^ Gray, S.M. (1996). Plant virus proteins involved in natural vector transmission. Trends Microbiol. 4: 259-264.
  25. ^ Bradley, R.H.E. and Rideout, D.W. (1953). Comparative transmission of Potato virus Y by four aphid species that infect potatoes. Can. J. Zool., 31: 333-341.
  26. ^ Harrison, B.D. (1984). CMI/AAB Descriptions of plant viruses. Potato leafroll virus 291 (no. 36 revised). www.dpvweb.net/dpv/showdpv.php?dvpno=291.
  27. ^ Kostiw, M. (1975). Investigation on the retention of potato viruses M and Y in two species of aphids (Myzus persicae Sulz. and Aphis nasturtii Kalt.). Pot. Res., 18: 637–640.
  28. ^ a b Carrington, J.C. and Freed, D.D. (1990). Cap-independent enhancement of translation by a plant potyvirus 5’ nontranslated region. J. Virol., 64: 1590-1597.
  29. ^ Wu, X and Shaw, J.G. (1998). Evidence that assembly of a potyvirus begins near the 5’terminus of the viral RNA. J. Gen. Virol., 79: 1525–1529.
  30. ^ a b c Talbot, N.J. (2004). Plant-Pathogen Interaction. Blackwell Publishing. CRC Press.
  31. ^ Bagnall, R.H. and Bradley R.H.E. (1958). Resistance to virus Y in the potato. Phytopathology, 48: 61-120.
  32. ^ Bushell, M. and Sarnow, P. (2002). Hijacking the translation apparatus by RNA viruses. J. Cell Biol.,158: 395-399.
  33. ^ a b Pompe-Novak, M., Gruden, K., Baebler, S., Krečič-Stres, H., Kovač, M., Jongsma, M. and Ravnikar, M. (2006). Potato virus Y induced changes in the gene expression of potato (Solanum tuberosum L.). Physio. and Mol. Pl Path., 67: 237-247.
  34. ^ a b Baebler Š, Krečič-Stres H, Rotter A, Kogovšek P, Cankar K, Kok EJ, Gruden K, Kovač M, Žel J, Pompe-Novak M, Ravnikar M, 2009. PVYNTN elicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. Mol Plant Pathol 10, 263-275.
  35. ^ Krečič-Stres H., Vučak C., Ravnikar M., Kovač M. 2005. Systemic Potato virus YNTN infection and levels of salicylic and gentisic acids in different potato genotypes. Plant Pathol, 54: 441-447
  36. ^ Dermastia M., Ravnikar M. 1996. Altered cytokinin pattern and enhanced tolerance to potato virus YNTN in the susceptible potato cultivar (Solanum tuberosum L.) grown in vitro. Physiol Mol Plant P, 48: 65-71
  37. ^ Pompe-Novak M., Wrischer M., Ravnikar M. 2001. Ulrastructure of chloroplasts in leaves of potato plants infeceted by potato virus YNTN. Phyton, 41: 215-226
  38. ^ Milavec M., Ravnikar M., Kovač M. 2001. Peroxidases and photosynthetic pigments in susceptible potato infected with potato virus YNTN. Plant Physiol Bioch 39: 891-898
  39. ^ Gruden K., Štrukelj B., Ravnikar M., Herzog-Velikonja B. 2000. A putative virial resistance-connected protein isolated from potato cultivar Santé resistant to PVYNTN infection. Phyton, 40: 191-200
  40. ^ Edwardson, J.R (1947). Some Properties of the Potato Virus Y Group. Florida Agricultural Experiment Stations Monograph Series, 4: 398.
  41. ^ Dougherty, W.G. and Carrington, J.C. (1988). Expression and function of potyviral gene products. Annu. Rev. Phytopathol., 26: 123-143.
  42. ^ Van der Vlugt, R., Allefs, S., De Haan, P. and Goldbach, R. (1989). Nucleotide sequence of the 3’-terminal region of potato virus YN RNA. J. Gen. Virol., 70: 229-233.
  43. ^ Dallaire, B.J., Charest, P.J., Devantier., Y. and Laliberté, J.-F. (1994). Evidence for an internal ribosome entry site within the 5' non- translated region of turnip mosaic potyvirus RNA. J. Gen. Virol., 75: 3157-3165.
  44. ^ Niepel, M. and Gallie, D.R. (1999). Identification and characterization of the functional elements within the tobacco etch virus 5' leader required for cap-independent translation. J. Gen. Virol., 79: 897-904.
  45. ^ a b Tijssen, P. (1985). Burdon, R.H.and Knippenberg, P.H. [ed], Laboratory techniques in biochemistry and molecular biology practice and theory of enzyme immunoassays, volume 15, Elsevier Science Publishers B.V., Amsterdam.
  46. ^ a b c d Wilson, K. and Walker, J. (2000). Practical biochemistry: Principles and techniques. (5th ed). The Press Syndicate, University of Cambridge, Cambridge, U.K.
  47. ^ Blake, C. and Gould, B.J. (1984). Use of enzymes in immunoassay techniques. Analyst, 109: 533-547.
  48. ^ Gugerli, P. and Gehriger, W. (1980). Enzyme-linked immunosorbent assay (ELISA) for the detection of potato leafroll virus and potato virus Y in potato tubers after artificial break of dormancy. Pot. Res., 23: 353–359.
  49. ^ Mumford, R.A., Fisher, T., Elmore, J., Vickers, D., Swan, H., Walsh, K., Barker, I. and Boonham, N. (2004). The development of a routine direct tuber testing method as a rapid and reliable alternative to the traditional growing-on test. 12th EARP Virology Section Meeting Rennes, France, 2004: abstracts of oral presentations and poster presentation. Available: http://www.rennes.inra.fr/eapr2004/abstracts.htm
  50. ^ Agindotan, B. O., Shiel, P. J., Berger, P. H., 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan(R) real-time RT-PCR. J Virol Methods 142, 1-9.
  51. ^ Balme-Sinibaldi, V., Tribodet, M., Croizat, F., Lefeuvre, P., Kerlan, C., Jacquot, E., 2006. Improvement of Potato virus Y (PVY) detection and quantitation using PVYN- and PVYO-specific real-time RT-PCR assays. J Virol Methods 134, 261-266.
  52. ^ Jacquot, E., Tribodet, M., Croizat, F., Balme-Sinibaldi, V., Kerlan, C., 2005. A single nucleotide polymorphism-based technique for specific characterization of YO and YN isolates of Potato virus Y (PVY). J Virol Methods 125, 83-93.
  53. ^ Kogovšek, P., Gow, L., Pompe-Novak, M., Gruden, K., Foster, G.D., Boonham, N., Ravnikar, M., 2008. Single-step RT real-time PCR for sensitive detection and discrimination of Potato virus Y isolates. J Virol Methods 149, 1-11.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Potato virus Y: Brief Summary

provided by wikipedia EN

Potato virus Y (PVY) is a plant pathogenic virus of the family Potyviridae, and one of the most important plant viruses affecting potato production.

PVY infection of potato plants results in a variety of symptoms depending on the viral strain. The mildest of these symptoms is production loss, but the most detrimental is 'potato tuber necrotic ringspot disease' (PTNRD). Necrotic ringspots render potatoes unmarketable and can therefore result in a significant loss of income. PVY is transmissible by aphid vectors but may also remain dormant in seed potatoes. This means that using the same line of potato for production of seed potatoes for several consecutive generations will lead to a progressive increase in viral load and subsequent loss of crop.

An increase in potato plant infection with viruses over the past few years has led to considerable losses to the South African potato industry. The increased rate of infection may be attributed to several factors. These include a marked decrease in the effectiveness and administration of chemicals used in vector control, the use of infected seed potatoes in cultivation, incorrect irrigation and farming methods as well as a lack of a sensitive, rapid and reliable method of detection. An increase in the average temperature of winters as a consequence of global warming has also led to an increase in aphid numbers, which in turn has led to an increase in viral distribution.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Potato Virus Y ( Spanish; Castilian )

provided by wikipedia ES

El mosaico severo de la papa es una enfermedad causada por el virus PVY (Potato Virus Y), perteneciente a la familia Potyviridae. De las virosis de la papa esta enfermedad es la segunda en importancia (luego de PLRV) y se encuentra en todas las regiones donde se cultiva la papa en el mundo. Las pérdidas que causa en el rendimiento pueden alcanzar el 80% en cultivares altamente susceptibles al ataque del virus. El virus se perpetúa por tubérculos infectados y es transmitido por áfidos en forma no persistente. El PVY puede también trasmitirse mecánicamente a través de la maquinaria, herramientas, y por el daño que se les hace a las plantas mientras se camina a través del cultivo. Sin embargo, los áfidos son por excelencia el medio más eficiente de trasmisión.

Síntomas

Los síntomas varían mucho según las variantes del virus, el cultivar y el medio ambiente. Son síntomas típicos la rugosidad, aglomeración, retorcimiento de hojas, doblez hacia abajo del margen de los folíolos, enanismo, necrosis de las nervaduras de los folíolos, manchas necróticas, necrosis de las hojas y rayado en el tallo. Los cultivares menos sensibles, o aquellos infectados con una variante menos agresiva llamada PVYN, reaccionan mostrando solo mosaico suave o pueden estar infectados sin presentar síntomas.

Razas

Sobre la base de los diferentes síntomas que causan en papa y en tabaco se han identificado varias razas de PVY. PVYO es la raza común y causa síntomas de mosaico. PVYC causa estriado puntiforme (“stipple streak”). PVYN, es la raza necrótica y en general causa síntomas leves en el follaje, sin embargo en variedades de papa susceptible causa necrosis en las hojas. Infecciones mezcladas de las razas común y la necrótica son frecuentes y los genomas (material genético) se pueden mezclar, produciendo razas híbridas (por ejemplo PVYN:O y PVYNTN). Las razas PVYNTN pueden causar necrosis en los tubérculos. El diagnóstico de estas razas puede ser difícil ya que si bien hay anticuerpos para PVYO y PVYN, el método inmunológico (ELISA, acrónimo inglés de Enzyme Linked Immunosorbent Assay) no pueden distinguir el PVYNTN de estas otras dos razas del virus. Además, no todas los aislamientos de PVYN reaccionan con el anticuerpo específico PVYN, mientras que algunos aislados de PVYO si lo harán. La sintomatología por sí sola no permite distinguir entre estas razas del virus, ya que los síntomas varían con la edad, el momento de infección, la temperatura, y la genética tanto del virus como de la planta huésped. Las razas de PVY pueden interaccionar con otros virus de la papa tales como el Virus X (Potato virus X, PVX) y el Virus A (Potato virus A, PVA) lo que se traduce en mayores perdidas. Los síntomas necróticos en los tubérculos a menudo se incrementan después del almacenamiento.

Control

El PVY se controla mediante la selección clonal y el descarte de plantas enfermas ("roguing") durante el proceso de propagación de la semilla. Existen cultivares resistentes.

Véase también

Bibliografía

  • Salazar, L.F. Identificación y control de enfermedades virales y fitoplasmas de la papa. Simposium Internacional de la Papa. Metepec, Estado de México. 25 y 26 de agosto de 1997.[1]
  • Centro Internacional de la papa (CIP). 1999. Principales Enfermedades, Nematodos a Insectos de la Papa.[2]
 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Potato Virus Y: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

El mosaico severo de la papa es una enfermedad causada por el virus PVY (Potato Virus Y), perteneciente a la familia Potyviridae. De las virosis de la papa esta enfermedad es la segunda en importancia (luego de PLRV) y se encuentra en todas las regiones donde se cultiva la papa en el mundo. Las pérdidas que causa en el rendimiento pueden alcanzar el 80% en cultivares altamente susceptibles al ataque del virus. El virus se perpetúa por tubérculos infectados y es transmitido por áfidos en forma no persistente. El PVY puede también trasmitirse mecánicamente a través de la maquinaria, herramientas, y por el daño que se les hace a las plantas mientras se camina a través del cultivo. Sin embargo, los áfidos son por excelencia el medio más eficiente de trasmisión.

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Virus Y de la pomme de terre ( French )

provided by wikipedia FR

Potato virus Y

Le virus Y de la pomme de terre (PVY, sigle de Potato virus Y), est un phytovirus pathogène de la famille des Potyviridae. C'est l'un des plus importants virus affectant les cultures de pomme de terre.

L'infection des plants de pomme de terre par le virus Y provoque divers symptômes en fonction de la souche virale. Elle se traduit souvent par une simple baisse de rendement, mais aussi par l'apparition de taches nécrotiques dans les tubercules, qui rendent les pommes de terre impropres à la vente et peuvent donc entraîner une perte de revenus importante pour les producteurs. Ces derniers symptômes sont connus sous le nom de « maladie des taches annulaires nécrotiques de la pomme de terre ».

Le virus Y est transmis par diverses espèces de pucerons qui en sont le vecteur le plus important, mais il peut aussi rester en sommeil dans les tubercules utilisés comme semence. Il s'ensuit que l'utilisation de la même souche de pomme de terre pour la production de plants pendant plusieurs générations se traduit par une augmentation progressive de la charge virale et des pertes de plus en plus importantes de produits.

En Afrique du Sud, la production de pommes de terre a subi des pertes considérables dues au virus Y ces dernières années[Quand ?]. Cette augmentation du taux d'infection est attribuable à plusieurs facteurs : diminution marquée de l'efficacité et de l'emploi des insecticides aphicides, emploi de plants de pommes de terre infectés, irrigation mal conduite et absence de méthodes de détection sensibles, rapides et fiables[2]. L'augmentation de la température moyenne en hiver due au réchauffement climatique a également conduit à une prolifération des pucerons, ce qui a conduit à une augmentation de la diffusion du virus[2].

Virus Y de la pomme de terre, hôtes, souches et symptômes

 src=
Symptômes des anneaux nécrotiques sur un tubercule de pomme de terre

Le virus Y de la pomme de terre appartient au genre potyvirus. Ce genre est le plus important des groupes de phytovirus et est considérée comme l'un des groupes de virus les plus destructeurs affectant les cultures de pomme de terre[3]. Le genre Potyvirus contient plus de 200 membres qui provoquent des pertes importantes en agriculture[4]. Le virus Y affecte plusieurs espèces de grande importance économique. Il s'agit notamment, outre la pomme de terre, du tabac (Nicotiana tabacum L.), de la tomate (Lycopersicon esculentum Mill) et du piment (Capsicum frutescens L.)[5]. L'importance des dégâts causés aux cultures dépend de la souche de virus Y concernée, de la charge virale, du moment où l'infection se produit ainsi que de la résistance de l'hôte envers le virus[6]. La résistance des plantes hôtes à l'infection par le virus Y est souvent faible. L'infection d'un champ de pommes de terre par ce virus peut entraîner une perte de rendement comprise entre 10 et 100 %[6].

On a démontré que le virus Y compte différents isolats provoquant des symptômes différents chez la pomme de terre[7]. La grande variabilité biologique, sérologique et moléculaire des isolats du virus Y rend particulièrement difficile leur classification en souches particulières. La variété des symptômes et l'apparition du virus YNTN nécrotique a conduit à la recherche d'outils de classement plus fiables que l'identification sérologique simple. Traditionnellement, on distingue trois souches principales de virus Y : PVYC, PVYN et PVYO. Le PVYC, désigné à l'origine sous le nom de « virus C de la pomme de terre », a été la première souche reconnue et identifiée dans les années 1930[8]. Le PVYC induit une réponse hypersensibles chez une vaste gamme de cultivars de pomme de terre. Ces réactions incluent la formation de motifs de mosaïque légère ou en filets pointillés. Contrairement aux autres souches de virus Y, certaines souches de PVY ne sont pas transmissibles par les pucerons[9] Des études précédentes de Visser et al.[10] n'ont identifié aucun isolat local appartenant à la souche PVYC, mais elle a été signalée en Afrique du Sud[11],[12]. Une deuxième souche du virus Y est le PVYN[13], qui a été décrite chez des plants de tabac cultivés à proximité de plants de pomme de terre<[14]. La souche PVYN provoque une nécrose modérée des feuilles et même pas de dégâts aux tubercules. La souche ordinaire du virus Y est désigné comme PVYO. L'infection d'un plant de pomme de terre par le PVYO provoque des dégâts peu importants sur les tubercules mais pas de nécrose des feuilles[15]. Les deux souches PVYN et PVYO sont transmissibles par les pucerons et sont présentes en Afrique du Sud. En Europe, on a démontré que ces deux souches se sont recombinées pour former la souche PVYNTN[16],[17]. On attribue au PVYNTN la capacité de déclencher la maladie des anneaux nécrotiques du tubercule [16]. Les tubercules atteints par cette maladie sont invendables et l'infection par la souche PVYNTN a donc un effet économique plus important que l'infection par les autres souches.

Transmission du virus Y de la pomme de terre

Le virus Y peut se transmettre aux plants de pomme de terre par greffe, par l'inoculation de la sève ou par les pucerons. Le mode le plus fréquent d'infection par le virus Y passe par les pucerons. Ces insectes piqueurs peuvent aussi causer des dommages directs aux plantes, mais c'est leur rôle de vecteur viral qui a la plus grande incidence économique[18],[19],[20]. Dans les climats froids, les pucerons passent l'hiver soit sous forme de pucerons aptères donnant naissance à des jeunes (vivipares), soit sous forme d'œufs. Divers hôtes, mauvaises herbes ou autres cultures, servent de réservoirs de reproduction et de colonies temporaires pour ces pucerons avant qu'ils ne migrent vers les champs de pommes de terre[19]. Dans les climats tempérés, comme en Afrique du Sud, les pucerons se reproduisent de manière asexuée sur les mauvaises herbes, les autres cultures, les plantes indigènes et les plantes de jardin. De ce fait, de nombreux pucerons sont présents toute l'année. Une étude de Radcliffe et Ragsdale (2002) souligne l'importance d'un contrôle rigoureux et efficace des populations de pucerons, dans la mesure où les virions du virus Y sont introduits dans les champs de pomme de terre presque uniquement par les pucerons ailés à partir de sources de virus extérieures. L'intervention de pucerons aptères dans cette transmission du virus Y vers les cultures de pommes de terre n'a jamais été démontrée[21].

On a constaté que le puceron vert du pêcher (Myzus persicae) est le plus efficace dans le rôle de vecteur viral[6],[18],[22], mais d'autres pucerons, tels Aphis fabae, Aphis gossypii, Aphis nasturtii, Macrosiphum euphorbiae, Myzus certus, Myzus humuli et Rhopalosiphum insertum, sont aussi fortement associés à la transmission virale[18],[22]. En Afrique du Sud, l'Agricultural Research Council-Vegetable and Ornamental Plant Institute (ARC-VOPI) a identifié vingt-cinq espèces de pucerons capable de faire office de vecteurs du PVY[23]. L'efficacité de certains de ces pucerons en tant que vecteurs du PVY a également été établie (Ragsdale et al., 2001) et celle-ci varie selon les espèces. En Afrique du Sud, Aphis fabae, Aphis gossypii et Aphis nasturtii sont les vecteurs du PVY les plus courants et le plus efficaces au champ[6]. Outre le classement en fonction de leur efficacité en tant que vecteurs, les pucerons peuvent aussi se subdiviser en deux sous-groupes, selon qu'ils sont ou non inféodés à la pomme de terre. Les pucerons colonisateurs sont ceux qui se reproduisent et établissent des colonies sur les plants de pomme de terre, et sont spécifiquement inféodés à cette plante, tandis que les pucerons non colonisateurs ne se reproduisent pas et n'établissent pas de colonies sur les pommes de terre. Les pucerons colonisateurs sont mieux adaptés à la vie sur des plants de pomme de terre et sont généralement considérés comme de meilleurs vecteurs du PVY que les autres. Ces derniers ne se nourrissent pas essentiellement sur les pommes de terre mais le font à l'occasion alors qu'ils recherchent un hôte plus adéquat. Cependant, leur moindre efficacité en tant que vecteurs du PVY peut se trouver compensée par leur forte pullulation[20],[24]. De ce fait, tous les pucerons présents dans les champs de pommes de terre, ou aux alentours, doivent être considérés comme de possibles vecteurs et leur pullulations soigneusement surveillées.

La transmission du PVY par les pucerons se produit selon un mode non persistant, non circulant, qui suggère une interaction entre le virion et le vecteur moins intime que dans le cas des virions circulants[25]. Le fait que les virions sont transmis selon un mode non persistant indique que la réplication virale ne se produit pas dans l'organisme du puceron vecteur et que, à moins que le puceron ne se nourrisse sur des plantes infectées, il perd sa capacité d'infecter les plantes après deux ou trois nourrissages[6],[26]. Les virions s'attachent au stylet des pucerons en l'espace de quelques secondes et peuvent rester infectieux de quatre à dix-sept heures[27],[28]. La distance à laquelle les virions peuvent être transmis est limitée du fait de la brève période pendant laquelle ils restent infectieux[24]. Bien que la courte durée de vie hors des plantes inhibe la transmission virale à longue distance, elle ne réduit pas l'efficacité de la transmission permise par le rythme élevé d'acquisition virale et d'inoculation dans les champs.

A l'entrée dans la cellule végétale, la protéine capside du virus désassemble et libère son ARN génomique. L'ARN viral fonctionne comme ARNm, et bien qu'on n'en sache peu sur la traduction en cause, on pense que la région non codante 5’ fonctionne comme un amplificateur de traduction[29]. L'ARNm traduit donne une polyprotéine et chaque polyprotéine est ensuite scindée en dix protéines différentes supposées être multifunctionelles. Ces protéines, ainsi que des protéines de l'hôte, s'assemblent pour former un complexe de réplication. Ce complexe réalise la synthèse de l'ARN simple brin à polarité négative, utilisant comme modèle le brin positif de l'ARN viral. Une fois produites, les copies de l'ARN additionnel codent la synthèse de diverses protéines, comme indiqué plus haut, ainsi que pour des protéines capsides. Ces protéines capsides vont maintenant envelopper les génomes nouvellement formés pour donner naissance à de nouveaux virions. On suppose que l'enveloppement des virions nouvellement formés est déclenchée par l'interaction des protéines capsides avec l'extrémité 5’ et que la protéine capside est construite vers l'extrémité 3’[30]. La totalité du processus de réplication virale se produit à l'intérieur du réticulum endoplasmique. Ces particules virales nouvellement synthétisées sont ensuite transportées par l'intermédiaire des plasmodesmes vers les cellules végétales adjacente grâce à plusieurs protéines assistantes des Potyvirus. La distribution des virus dans la plante se produit en fonction des relations source-puits entre les tissus adultes et tissus en croissance[31]. La concentration en virus dans l'ensemble de la plante est élevée et cela augmente fortement la probabilité d'ingestion par les pucerons. L'infection des plantes par des Potyvirus peut produire des symptômes variés. Elle peut se traduite par des nécroses des nervures, des symptômes de mosaïque aussi bien que des déformations des feuilles (Boonham et al., 2002). Les plantes infectées qui ne montrent pas de symptômes peuvent avoir un couvert infecté et produire une récolte de moindre qualité que leur bon aspect sanitaire ne le laisse présumer.

Description moléculaire du virus Y de la pomme de terre

Les virions de Potyvirus sont constitués de structures filamenteuses non enveloppées qui ont de 680 à 900 nm de long et 11 à 15 nm de large[32]. Morphologiquement, Potyvirus comprend environ 2 000 exemplaires de protéine capside (CP), qui forment un corps d'inclusion cylindrique (CIb)[31]. Le CIb est considéré comme le plus important critère phénotypique pour distinguer Potyvirus des autres groupes de virus.

Le CIb encapsule un ARN simple brin à polarité positive qui a une longueur d'environ 10 kb et a une région terminale 5’ non traduite (5'-NTR) ainsi qu'une queue poly-A 3’[33],[34]. Le génome à polarité positive contient un cadre de lecture unique étendu et agit directement comme ARNm. L'extrémité 5'-NTR à 144 nucléotides est particulièrement riche en résidus adénine et a très peu de résidus guanine. Plutôt qu'une structure conventionnelle de coiffe, l'extrémité 5'-NTR est associée à une protéine liée à l'ARN viral (protéine VPg) qui est supposée agir comme amplificateur de transcription[29].

La séquence de l'extrémité 5’ a un site d'entrée interne des ribosomes (IRES) et des éléments régulateurs de traduction indépendante de la coiffe (CIREs)[35]. L'IRES oriente la traduction indépendante de la coiffe par un mécanisme similaire à celui utilisé par les Eucaryotes[36]. Le cadre de lecture étendu code une polyprotéine de 350 kDa. Cette polyprotéine est protéolysée par des protéases virales (NIa, HC-Pro et P1) et subit un clivage pendant et après la traduction pour produire plusieurs protéines multifonctionnelles. Celles-ci comprennent les suivantes : P1 (protéine P1), HC-Pro (protéinase facteur assistant), P3 (protéine P3), 6K1 (protéine 1, 6-kDa), CIb (corps d'inclusion cylindrique), 6K2 (protéine 2, 6-kDa), VPg (protéine liée au génome viral), NIa-Pro (protéine a - inclusion nucléaire), NIb (protéine b - inclusion nucléaire) et la CP (protéine capside)[31].

Interaction entre pomme de terre et souches nécrotiques de PVYNTN

Du fait que les souches de PVYNTN provoquent des pertes économiques importantes dans la production de pomme de terre, la recherche sur l'interaction entre les plants de pomme de terre et ces souches virales est intense. Les cultivars sensibles de pomme de terre répondent à l'inoculation par des souches nécrotiques de PVYNTN par le développement de symptômes caractéristiques. Sur les feuilles inoculées, des anneaux nécrotiques et chlorotiques se développent de 5 à 7 jours après l'inoculation. Au fur et à mesure que le virus se répand dans les tissus de la plante, des symptômes systémiques apparaissent sur les feuilles non inoculées. Dix jours après l'inoculation, des rides et une chlorose en mosaïque apparaissent, conduisant à un aspect en palmier (dépérissement des feuilles).

Les mécanismes de défense virale des plantes tentent en premier lieu de restreindre le mouvement des virus. En cas d'échec, ils peuvent chercher à induire la mort des cellules dans les tissus infectés, prévenant ainsi la diffusion des virions[37]. Bien que le mécanisme précis d'induction de la maladie par les Potyvirus chez les plantes soit inconnu, on sait que ces virus provoquent un arrêt significatif de l'expression des gènes de l'hôte pendant la réplication virale[38],[39],[40].

Les changements physiologiques chez les plants de pomme de terre en réponse à une infection par une souche PVYNTN ont été intensivement étudiés. On a montré qu'aux premiers stades de l'infection, c'est-à-dire pendant les douze premières heures, les gènes liés à la photosynthèse, gènes impliqués dans la perception, le signalement et la réponse défensive sont exprimés différentiellement[40]. Vingt-quatre heures après l'inoculation, le taux d'acide salicylique augmente[41].

Une perturbation de l'expression des gènes dérègle le fonctionnement cellulaire normal des cellules, ce qui peut être la cause des symptômes physiques visibles sur la plante. Les recherches sur l'interaction, au moment du développement des symptômes, entre les cultivars sensibles de pomme de terre et les souches de PVYNTN ont montré des changements dans le niveau de la cytokinine[42]. Dans les feuilles inoculées montrant des modifications symptomatiques dans la structure et la taille des chloroplastes[43], des niveaux plus bas de chlorophylle et une activité différentielle des péroxydases solubles et liées de façon ionique[44] ont été détectés.

Aux stades ultérieurs d'une infection par des souches de PVYNTN, la concentration en protéines totales augmente chez les cultivars sensibles de pomme de terre, alors que des changements aussi prononcés ne sont pas observés chez les cultivars tolérants ou modérément tolérants[45]. Des études sur l'expression des gènes révèlent des changements dans l'expression des gènes des protéines de choc thermique (HSP), de la catalase, de la β-1,3-glucanase et des gènes impliqués dans la photosynthèse[39].

Notes, sources et références

  1. ICTV. International Committee on Taxonomy of Viruses. Taxonomy history. Published on the Internet https://talk.ictvonline.org/., consulté le 1er février 2021
  2. a et b Coetsee, J. (2005). Virusse bedreig hele aartappelbedryf, Landbouweekblad, 61637: 44-45.
  3. Ward, C.W. and Shukla, D.D. (1991). Taxonomy of potyviruses: current problems and possible solutions. Intervirology, 32: 269-296.
  4. Jawaid, A. Khan A.J and Dijkstra J. (2002). Plant Viruses as Molecular Pathogens. Food Products Press, The Haworth Press Inc., N.Y.
  5. McDonald, J.G. and Singh, R.P. (1996). Host range, symptomology and serology of isolates of Potato virus Y (PVY) that share properties with both the PVYN and PVYO strain groups. Amer. Pot. J., 73: 309- 314.
  6. a b c d et e Warren, M., Krüger, K. and Schoeman, A.S. (2005). Potato virus Y (PVY) and potato leaf roll virus(PLRV): Literature review for potatoes South Africa. Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of Pretoria.
  7. Delgado-Sanchez, S. and Grogan, R.G. (1970). Potato virus Y. CMI/AAB Descriptions of plant viruses. 37: CMI/AAB, Kew, Surrey, England, 4 pp.
  8. Salaman, R.N. (1930). Virus diseases of potato: Streak. Nature, 126: 241.
  9. Blanco-Urgoiti, B., Tribodet, M., Leclere, S., Ponz, F., Perez dé San Roman, C., Legorburu, F.J. and Kerlan, C. (1998). Characterization of potato potyvirus y isolates from seed potato batches. Situation of the NTN, Wilga and Z isolates. Eur. J. Pl. Path., 104: 811-819.
  10. Visser, J.C., Rothmann, A.H. and Bellstedt, D.U. (Unpublished). An assessment of recombination patterns in South African strains of potato virus Y (PVY). Honours thesis.
  11. Brunt, A.A. (2001). Potyviruses. In: Loebenstein G., Berger, P.H., Brunt, A.A. and Lawson, R.H. (eds), Virus and virus-like diseases of potatoes and production of seed-potatoes. Kluwer Academic Publishers, Dordrecht, pp 77-86.
  12. De Bokx, J.A. (1981). CMI/AAB Descriptions of plant viruses. Potato virus Y. 37: 242. Downloaded from the worldwide web: www.dpvweb.net/dprv/showdpv.php?dpvno=242
  13. Smith, K.M. and Dennis, R.W.G. (1940)
  14. Crosslin, J., Hamm, P., Shiel, P., Hane, D., Brown, C. and Berger, P. (2005). Serological and Molecular Detection of Tobacco Veinal Necrosis Isolates of Potato Virus Y (PVYN) from Potatoes Grown in the Western United States. Amer. J. Pot. Res., 82: 263-269.
  15. Boonham, N., Walsh, K., Hims, M., Preston, S., North, J. and Barker, I. (2002). Biological and sequence comparisons of Potato virus Y isolates associated with potato tuber necrotic ringspot disease. Pl. Path., 51: 117-126.
  16. a et b Boonham, N., Walsh, K., Preston, S., North, J., Smith, P. and Barker, I. (2002). The detection of tuber necrotic isolates of Potato Virus Y, and the accurate discrimination of PVYO, PVYN and PVYC strains using RT-PCR. J. Virol. Meth., 102: 103–112.
  17. Lorenzen, J.H., Meacham, T., Berger, P.H., Shiel, P.J., Crosslin, J.M., Hamm, P.B. and Kopp, H. (2006). Whole genome characterization of Potato virus Y isolates collected in the western USA and their comparision to isolates from Europe and Canada. Arch. Virol., 151: 1055-1074.
  18. a b et c (en) Halbert, S.E., Corsini, D.L. and Wiebe, M.A. (2003). Potato virus Y transmission efficiency for some common aphids in Idaho. Amer. J. Pot. Res., 80: 87-91.
  19. a et b Radcliffe, E.B. and Ragsdale, D.W. (2002). Aphid-transmitted potato viruses: The importance of understanding vector biology. Amer. J. Pot. Res. 79: 353-386.
  20. a et b (en) Radcliffe, E.B. (1982). Insect pests of potato. Ann. R. Ento., 27: 173-204.
  21. (en) Ragsdale, D.W., Radcliffe, E.B., DiFonzo, C.D. (1994). Action thresholds for an aphid vector of potato leaf roll virus, pp. 99-110. In: Zehnder, G.W., Powelson, M.L., Jansson, R.K. and Raman, K.V. [ed.], Advances in potato pest biology and management. American Phytopathological Society, Minnesota, USA.
  22. a et b (en) Van Hoof, H.A. (1980). Aphid vectors of potato virus YN. Neth. J. Pl. Path., 86: 159.
  23. (en) Thompson, G.J. (1997). Study and control of virus disease of potatoes. In: Landbounavorsingsraad Roodeplaat: Aartappelnavorsing 1996/1997. Agricultural Research Council, Pretoria.
  24. a et b (en) Robert, Y., Woodford, J.A.T. and Ducray-Bourdin, D.G. (2000). Some epidemiological approaches to the control of aphid-borne virus diseases in seed potato crops in northern Europe. Vir. Res. 71: 33-47.
  25. (en) Gray, S.M. (1996). Plant virus proteins involved in natural vector transmission. Trends Microbiol. 4: 259-264.
  26. (en) Bradley, R.H.E. and Rideout, D.W. (1953). Comparative transmission of Potato virus Y by four aphid species that infect potatoes. Can. J. Zool., 31: 333-341.
  27. (en) Harrison, B.D. (1984). CMI/AAB Descriptions of plant viruses. Potato leafroll virus 291 (no. 36 revised). www.dpvweb.net/dpv/showdpv.php?dvpno=291.
  28. (en) Kostiw, M. (1975). Investigation on the retention of potato viruses M and Y in two species of aphids (Myzus persicae Sulz. and Aphis nasturtii Kalt.). Pot. Res., 18: 637–640.
  29. a et b (en) Carrington, J.C. and Freed, D.D. (1990). Cap-independent enhancement of translation by a plant potyvirus 5’ nontranslated region. J. Virol., 64: 1590-1597.
  30. (en) Wu, X and Shaw, J.G. (1998). Evidence that assembly of a potyvirus begins near the 5’terminus of the viral RNA. J. Gen. Virol., 79: 1525–1529.
  31. a b et c (en) Talbot, N.J. (2004). Plant-Pathogen Interaction. Blackwell Publishing. CRC Press.
  32. (en) J.R. Edwardson, « Some Properties of the Potato Virus Y Group », Florida Agricultural Experiment Stations Monograph Series, vol. 4, 1947, p. 398.
  33. (en) Dougherty, W.G. and Carrington, J.C. (1988). Expression and function of potyviral gene products. Annu. Rev. Phytopathol., 26: 123-143.
  34. Van der Vlugt, R., Allefs, S., De Haan, P. and Goldbach, R. (1989). Nucleotide sequence of the 3’-terminal region of potato virus YN RNA. J. Gen. Virol., 70: 229-233.
  35. (en) Dallaire, B.J., Charest, P.J., Devantier., Y. and Laliberté, J.-F. (1994). Evidence for an internal ribosome entry site within the 5' non-translated region of turnip mosaic potyvirus RNA. J. Gen. Virol., 75: 3157-3165.
  36. (en) Niepel, M. and Gallie, D.R. (1999). Identification and characterization of the functional elements within the tobacco etch virus 5' leader required for cap-independent translation. J. Gen. Virol., 79: 897-904.
  37. (en) Bagnall, R.H. and Bradley R.H.E. (1958). Resistance to virus Y in the potato. Phytopathology, 48: 61-120.
  38. (en) Bushell, M. and Sarnow, P. (2002). Hijacking the translation apparatus by RNA viruses. J. Cell Biol.,158: 395-399.
  39. a et b (en) Pompe-Novak, M., Gruden, K., Baebler, S., Krečič-Stres, H., Kovač, M., Jongsma, M. and Ravnikar, M. (2006). Potato virus Y induced changes in the gene expression of potato (Solanum tuberosum L.). Physio. and Mol. Pl Path., 67: 237-247.
  40. a et b (en) Baebler Š, Krečič-Stres H, Rotter A, Kogovšek P, Cankar K, Kok EJ, Gruden K, Kovač M, Žel J, Pompe-Novak M, Ravnikar M, 2009. PVYNTN elicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. Mol Plant Pathol 10, 263-275.
  41. (en) Krečič-Stres H., Vučak C., Ravnikar M., Kovač M. 2005. Systemic Potato virus YNTN infection and levels of salicylic and gentisic acids in different potato genotypes. Plant Pathol, 54: 441-447
  42. (en) Dermastia M., Ravnikar M. 1996. Altered cytokinin pattern and enhanced tolerance to potato virus YNTN in the susceptible potato cultivar (Solanum tuberosum L.) grown in vitro. Physiol Mol Plant P, 48: 65-71
  43. (en) Pompe-Novak M., Wrischer M., Ravnikar M. 2001. Ulrastructure of chloroplasts in leaves of potato plants infeceted by potato virus YNTN. Phyton, 41: 215-226
  44. Milavec M., Ravnikar M., Kovač M. 2001. Peroxidases and photosynthetic pigments in susceptible potato infected with potato virus YNTN. Plant Physiol Bioch 39: 891-898
  45. (en) Gruden K., Štrukelj B., Ravnikar M., Herzog-Velikonja B. 2000. A putative virial resistance-connected protein isolated from potato cultivar Santé resistant to PVYNTN infection. Phyton, 40: 191-200

Référence biologique

Voir aussi

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Virus Y de la pomme de terre: Brief Summary ( French )

provided by wikipedia FR

Potato virus Y

Le virus Y de la pomme de terre (PVY, sigle de Potato virus Y), est un phytovirus pathogène de la famille des Potyviridae. C'est l'un des plus importants virus affectant les cultures de pomme de terre.

L'infection des plants de pomme de terre par le virus Y provoque divers symptômes en fonction de la souche virale. Elle se traduit souvent par une simple baisse de rendement, mais aussi par l'apparition de taches nécrotiques dans les tubercules, qui rendent les pommes de terre impropres à la vente et peuvent donc entraîner une perte de revenus importante pour les producteurs. Ces derniers symptômes sont connus sous le nom de « maladie des taches annulaires nécrotiques de la pomme de terre ».

Le virus Y est transmis par diverses espèces de pucerons qui en sont le vecteur le plus important, mais il peut aussi rester en sommeil dans les tubercules utilisés comme semence. Il s'ensuit que l'utilisation de la même souche de pomme de terre pour la production de plants pendant plusieurs générations se traduit par une augmentation progressive de la charge virale et des pertes de plus en plus importantes de produits.

En Afrique du Sud, la production de pommes de terre a subi des pertes considérables dues au virus Y ces dernières années[Quand ?]. Cette augmentation du taux d'infection est attribuable à plusieurs facteurs : diminution marquée de l'efficacité et de l'emploi des insecticides aphicides, emploi de plants de pommes de terre infectés, irrigation mal conduite et absence de méthodes de détection sensibles, rapides et fiables. L'augmentation de la température moyenne en hiver due au réchauffement climatique a également conduit à une prolifération des pucerons, ce qui a conduit à une augmentation de la diffusion du virus.

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR