dcsimg

Krallenfrösche ( German )

provided by wikipedia DE

Die Gattung Krallenfrösche (Xenopus) gehört zur Familie der Zungenlosen Frösche (Pipidae) innerhalb der Ordnung der Froschlurche (Anura). Die fast 30 Arten haben – im Gegensatz zu den Zwergkrallenfröschen – keine Schwimmhäute zwischen den Vorderfingern. Die bekannteste Art dieser Gattung ist der Glatte Krallenfrosch.

Verbreitung

Die Gattung ist in Afrika südlich der Sahara verbreitet. Eine isolierte Population gibt es in der Region Ennedi, im Nordosten des Tschad. Einige Arten wurden in Teile der USA, Mexikos, Chiles, Indonesiens und Europas eingeschleppt.[1]

Lebensweise

Krallenfrösche besitzen weder eine Zunge noch Zähne; die Nahrungsaufnahme erfolgt durch Einsaugen der Beutetiere, wobei sie zusätzlich ihre Arme zu Hilfe nehmen. Zum Nahrungsspektrum zählen unter anderem Insekten, Würmer, kleine Fische und andere Amphibien. Zum Schutz vor Fressfeinden, wie Schlangen, Ottern oder Kormoranen, sondern die Krallenfrösche Giftstoffe über die Haut ab. Die Paarung kann über das ganze Jahr stattfinden.

Arten

Es gibt in der Gattung 29 Arten.[1] In neueren Arbeiten wird die Unterscheidung in zwei Untergattungen nicht mehr gemacht.

Stand: 24. September 2019

Etymologie

Den Namen hat die Gattung durch das Aussehen der Füße ihrer Arten erhalten, denn das Wort Xenopus setzt sich zusammen aus dem griechischen Wort xenos (= der Fremde) und dem griechischen Wort pous (= Fuß). Die Bedeutung „seltsamer Fuß“ weist darauf hin, dass Krallenfrösche nur an den drei inneren der jeweils fünf Zehen Krallen besitzen.

Einzelnachweise

  1. a b Darrel R. Frost: Xenopus Wagler, 1827. In: Amphibian Species of the World: an Online Reference. Version 6.0. American Museum of Natural History, New York, 1998–2019, abgerufen am 24. September 2019
  2. a b Ben J. Evans, Timothy F. Carter, Eli Greenbaum, Václav Gvoždík, Darcy B. Kelley, Patrick J. McLaughlin, Olivier S. G. Pauwels, Daniel M. Portik, Edward L. Stanley, Richard C. Tinsley, Martha L. Tobias, David C. Blackburn. Genetics, Morphology, Advertisement Calls, and Historical Records Distinguish Six New Polyploid Species of African Clawed Frog (Xenopus, Pipidae) from West and Central Africa. PLOS ONE, 2015; 10 (12): e0142823 DOI: 10.1371/journal.pone.0142823
license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Krallenfrösche: Brief Summary ( German )

provided by wikipedia DE

Die Gattung Krallenfrösche (Xenopus) gehört zur Familie der Zungenlosen Frösche (Pipidae) innerhalb der Ordnung der Froschlurche (Anura). Die fast 30 Arten haben – im Gegensatz zu den Zwergkrallenfröschen – keine Schwimmhäute zwischen den Vorderfingern. Die bekannteste Art dieser Gattung ist der Glatte Krallenfrosch.

license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Chura-kucha ( Swahili )

provided by wikipedia emerging languages

Vyura-kucha ni aina za vyura ambao wanaishi majini maisha yao yote. Miguu yao ya nyuma ina ngozi katikati ya vidole lakini miguu ya mbele hainayo, isipokuwa vyura-kucha wadogo ambao wana ngozi katikati ya vidole vya miguu yote. Kuna vidole vitano kwa miguu ya nyuma lakini vidole vinne kwa miguu ya mbele. Vidole vitatu vya miguu ya nyuma vina ukucha mweusi. Mwili wao ni mpanapana na ngozi ni ya kuteleza kwa sababu ya ute mwingi. Vyura hawa hawana ulimi. Hufanya sauti kama mialiko kwa mfupa wa hayoidi (hyoid bone).

Spishi za Afrika

Spishi za Amerika ya Kusini

Picha

license
cc-by-sa-3.0
copyright
Waandishi wa Wikipedia na wahariri

Chura-kucha: Brief Summary ( Swahili )

provided by wikipedia emerging languages

Vyura-kucha ni aina za vyura ambao wanaishi majini maisha yao yote. Miguu yao ya nyuma ina ngozi katikati ya vidole lakini miguu ya mbele hainayo, isipokuwa vyura-kucha wadogo ambao wana ngozi katikati ya vidole vya miguu yote. Kuna vidole vitano kwa miguu ya nyuma lakini vidole vinne kwa miguu ya mbele. Vidole vitatu vya miguu ya nyuma vina ukucha mweusi. Mwili wao ni mpanapana na ngozi ni ya kuteleza kwa sababu ya ute mwingi. Vyura hawa hawana ulimi. Hufanya sauti kama mialiko kwa mfupa wa hayoidi (hyoid bone).

license
cc-by-sa-3.0
copyright
Waandishi wa Wikipedia na wahariri

Xenopus ( Javanese )

provided by wikipedia emerging languages

Xenopus ya iku kodhok kang asalé saka Sahara, Afrika.[1] Xenopus dikenal minangka kodhok pencakar saka Afrika utawa Platanna, amarga duwé sikil kanthi wujud cakar kang kanggo nyuwek panganane.[1] Xenopus wujud bunder, kaya endhog lan duwé kulit kang lunyu banget.[2] Lumrahé, xenopus tinemu ing banyu kanthi warna ijo semu klawu, lan tansah ganti kulit ing saben mangsa.[2] Xenopus duwé wektu urip sakiwa-tengené 5-15 taun.[2] Xenopus lanang lan wadon bisa dibédakaké dhedhasar wujudé.[2] Wujud xenopus lanang lumrahé sakiwa-tengené 20% luwih cilik saka xenopus wadon, kanthi awak lan sikil rada langsing.[2] Xenopus wadon luwih lemu kanthi benjolan dhuwur mburi sikil, karena benjolan mau minangka panggona endhog.[2] Jinis xenopus yang kaloka ya iku kang misuwur ya iku xenopus laevis lan xenopus tropicalis.[2] Sakloron jinis xenopus iki digunakaké ing laboratorium minangka subyek paneliten.[2]

Cathetan suku

  1. a b Keith Hall, Brian. (1999). Evolutionary Developmental Biology. South America. Kluwer Academic. ISBN 0-412-78590-0, 9780412785900. Page 124.
  2. a b c d e f g h African Clawed Frog, xenopuswiki.wetpaint.com. Diundhuh tanggal 9 Juni 2010.

license
cc-by-sa-3.0
copyright
Penulis lan editor Wikipedia

Xenopus: Brief Summary ( Javanese )

provided by wikipedia emerging languages

Xenopus ya iku kodhok kang asalé saka Sahara, Afrika. Xenopus dikenal minangka kodhok pencakar saka Afrika utawa Platanna, amarga duwé sikil kanthi wujud cakar kang kanggo nyuwek panganane. Xenopus wujud bunder, kaya endhog lan duwé kulit kang lunyu banget. Lumrahé, xenopus tinemu ing banyu kanthi warna ijo semu klawu, lan tansah ganti kulit ing saben mangsa. Xenopus duwé wektu urip sakiwa-tengené 5-15 taun. Xenopus lanang lan wadon bisa dibédakaké dhedhasar wujudé. Wujud xenopus lanang lumrahé sakiwa-tengené 20% luwih cilik saka xenopus wadon, kanthi awak lan sikil rada langsing. Xenopus wadon luwih lemu kanthi benjolan dhuwur mburi sikil, karena benjolan mau minangka panggona endhog. Jinis xenopus yang kaloka ya iku kang misuwur ya iku xenopus laevis lan xenopus tropicalis. Sakloron jinis xenopus iki digunakaké ing laboratorium minangka subyek paneliten.

license
cc-by-sa-3.0
copyright
Penulis lan editor Wikipedia

Xenopus

provided by wikipedia EN

Xenopus (/ˈzɛnəpəs/[1][2]) (Gk., ξενος, xenos=strange, πους, pous=foot, commonly known as the clawed frog) is a genus of highly aquatic frogs native to sub-Saharan Africa. Twenty species are currently described within it. The two best-known species of this genus are Xenopus laevis and Xenopus tropicalis, which are commonly studied as model organisms for developmental biology, cell biology, toxicology, neuroscience and for modelling human disease and birth defects.[3][4][5]

The genus is also known for its polyploidy, with some species having up to 12 sets of chromosomes.

Characteristics

Xenopus laevis is a rather inactive creature. It is incredibly hardy and can live up to 15 years. At times the ponds that Xenopus laevis is found in dry up, compelling it, in the dry season, to burrow into the mud, leaving a tunnel for air. It may lie dormant for up to a year. If the pond dries up in the rainy season, Xenopus laevis may migrate long distances to another pond, maintaining hydration by the rains. It is an adept swimmer, swimming in all directions with ease. It is barely able to hop, but it is able to crawl. It spends most of its time underwater and comes to surface to breathe. Respiration is predominantly through its well developed lungs; there is little cutaneous respiration.

Description

All species of Xenopus have flattened, somewhat egg-shaped and streamlined bodies, and very slippery skin (because of a protective mucus covering).[6] The frog's skin is smooth, but with a lateral line sensory organ that has a stitch-like appearance. The frogs are all excellent swimmers and have powerful, fully webbed toes, though the fingers lack webbing. Three of the toes on each foot have conspicuous black claws.

The frog's eyes are on top of the head, looking upwards. The pupils are circular. They have no moveable eyelids, tongues (rather it is completely attached to the floor of the mouth[6]) or eardrums (similarly to Pipa pipa, the common Suriname toad[7]).[8]

Unlike most amphibians, they have no haptoglobin in their blood.[8]

Behaviour

Xenopus species are entirely aquatic, though they have been observed migrating on land to nearby bodies of water during times of drought or in heavy rain. They are usually found in lakes, rivers, swamps, potholes in streams, and man-made reservoirs.[8]

Adult frogs are usually both predators and scavengers, and since their tongues are unusable, the frogs use their small fore limbs to aid in the feeding process. Since they also lack vocal sacs, they make clicks (brief pulses of sound) underwater (again similar to Pipa pipa).[7] Males establish a hierarchy of social dominance in which primarily one male has the right to make the advertisement call.[9] The females of many species produce a release call, and Xenopus laevis females produce an additional call when sexually receptive and soon to lay eggs.[10] The Xenopus species are also active during the twilight (or crepuscular) hours.[8]

During breeding season, the males develop ridge-like nuptial pads (black in color) on their fingers to aid in grasping the female. The frogs' mating embrace is inguinal, meaning the male grasps the female around her waist.[8]

Species

A Xenopus laevis female with a batch of freshly laid eggs and a Xenopus tropicalis male

Extant species

Fossil species

The following fossil species have been described:[11]

Model organism for biological research

Like many other frogs, they are often used in laboratory as research subjects.[6] Xenopus embryos and eggs are a popular model system for a wide variety of biological studies.[4][5] This animal is used because of its powerful combination of experimental tractability and close evolutionary relationship with humans, at least compared to many model organisms.[4][5]

Xenopus has long been an important tool for in vivo studies in molecular, cell, and developmental biology of vertebrate animals.[12] However, the wide breadth of Xenopus research stems from the additional fact that cell-free extracts made from Xenopus are a premier in vitro system for studies of fundamental aspects of cell and molecular biology. Thus, Xenopus is a vertebrate model system that allows for high-throughput in vivo analyses of gene function and high-throughput biochemistry. Furthermore, Xenopus oocytes are a leading system for studies of ion transport and channel physiology.[4] Xenopus is also a unique system for analyses of genome evolution and whole genome duplication in vertebrates,[13] as different Xenopus species form a ploidy series formed by interspecific hybridization.[14]

In 1931, Lancelot Hogben noted that Xenopus laevis females ovulated when injected with the urine of pregnant women.[15] This led to a pregnancy test that was later refined by South African researchers Hillel Abbe Shapiro and Harry Zwarenstein.[16] A female Xenopus frog injected with a woman's urine was put in a jar with a little water. If eggs were in the water a day later it meant the woman was pregnant. Four years after the first Xenopus test, Zwarenstein's colleague, Dr Louis Bosman, reported that the test was accurate in more than 99% of cases.[17] From the 1930s to the 1950s, thousands of frogs were exported across the world for use in these pregnancy tests.[18]

The National Xenopus Resource of the Marine Biological Laboratory is an in vivo repository for transgenic and mutant strains and a training center.[19]

Online Model Organism Database

Xenbase[20] is the Model Organism Database (MOD) for both Xenopus laevis and Xenopus tropicalis.[21]

Investigation of human disease genes

All modes of Xenopus research (embryos, cell-free extracts, and oocytes) are commonly used in direct studies of human disease genes and to study the basic science underlying initiation and progression of cancer.[22] Xenopus embryos for in vivo studies of human disease gene function: Xenopus embryos are large and easily manipulated, and moreover, thousands of embryos can be obtained in a single day. Indeed, Xenopus was the first vertebrate animal for which methods were developed to allow rapid analysis of gene function using misexpression (by mRNA injection[23]). Injection of mRNA in Xenopus that led to the cloning of interferon.[24] Moreover, the use of morpholino-antisense oligonucleotides for gene knockdowns in vertebrate embryos, which is now widely used, was first developed by Janet Heasman using Xenopus.[25]

In recent years, these approaches have played in important role in studies of human disease genes. The mechanism of action for several genes mutated in human cystic kidney disorders (e.g. nephronophthisis) have been extensively studied in Xenopus embryos, shedding new light on the link between these disorders, ciliogenesis and Wnt signaling.[26] Xenopus embryos have also provided a rapid test bed for validating newly discovered disease genes. For example, studies in Xenopus confirmed and elucidated the role of PYCR1 in cutis laxa with progeroid features.[27]

Transgenic Xenopus for studying transcriptional regulation of human disease genes: Xenopus embryos develop rapidly, so transgenesis in Xenopus is a rapid and effective method for analyzing genomic regulatory sequences. In a recent study, mutations in the SMAD7 locus were revealed to associate with human colorectal cancer. The mutations lay in conserved, but noncoding sequences, suggesting these mutations impacted the patterns of SMAD7 transcription. To test this hypothesis, the authors used Xenopus transgenesis, and revealed this genomic region drove expression of GFP in the hindgut. Moreover, transgenics made with the mutant version of this region displayed substantially less expression in the hindgut.[28]

Xenopus cell-free extracts for biochemical studies of proteins encoded by human disease genes: A unique advantage of the Xenopus system is that cytosolic extracts contain both soluble cytoplasmic and nuclear proteins (including chromatin proteins). This is in contrast to cellular extracts prepared from somatic cells with already distinct cellular compartments. Xenopus egg extracts have provided numerous insights into the basic biology of cells with particular impact on cell division and the DNA transactions associated with it (see below).

Studies in Xenopus egg extracts have also yielded critical insights into the mechanism of action of human disease genes associated with genetic instability and elevated cancer risk, such as ataxia telangiectasia, BRCA1 inherited breast and ovarian cancer, Nbs1 Nijmegen breakage syndrome, RecQL4 Rothmund-Thomson syndrome, c-Myc oncogene and FANC proteins (Fanconi anemia).[29][30][31][32][33]

Xenopus oocytes for studies of gene expression and channel activity related to human disease: Yet another strength of Xenopus is the ability to rapidly and easily assay the activity of channel and transporter proteins using expression in oocytes. This application has also led to important insights into human disease, including studies related to trypanosome transmission,[34] Epilepsy with ataxia and sensorineural deafness[35] Catastrophic cardiac arrhythmia (Long-QT syndrome)[36] and Megalencephalic leukoencephalopathy.[37]

Gene editing by the CRISPR/CAS system has recently been demonstrated in Xenopus tropicalis[38][39] and Xenopus laevis.[40] This technique is being used to screen the effects of human disease genes in Xenopus and the system is sufficiently efficient to study the effects within the same embryos that have been manipulated.[41]

Investigation of fundamental biological processes

Signal transduction: Xenopus embryos and cell-free extracts are widely used for basic research in signal transduction. In just the last few years, Xenopus embryos have provided crucial insights into the mechanisms of TGF-beta and Wnt signal transduction. For example, Xenopus embryos were used to identify the enzymes that control ubiquitination of Smad4,[42] and to demonstrate direct links between TGF-beta superfamily signaling pathways and other important networks, such as the MAP kinase pathway[43] and the Wnt pathway.[44] Moreover, new methods using egg extracts revealed novel, important targets of the Wnt/GSK3 destruction complex.[45]

Cell division: Xenopus egg extracts have allowed the study of many complicated cellular events in vitro. Because egg cytosol can support successive cycling between mitosis and interphase in vitro, it has been critical to diverse studies of cell division. For example, the small GTPase Ran was first found to regulate interphase nuclear transport, but Xenopus egg extracts revealed the critical role of Ran GTPase in mitosis independent of its role in interphase nuclear transport.[46] Similarly, the cell-free extracts were used to model nuclear envelope assembly from chromatin, revealing the function of RanGTPase in regulating nuclear envelope reassembly after mitosis.[47] More recently, using Xenopus egg extracts, it was possible to demonstrate the mitosis-specific function of the nuclear lamin B in regulating spindle morphogenesis[48] and to identify new proteins that mediate kinetochore attachment to microtubules.[49] Cell-free systems have recently become practical investigatory tools, and Xenopus oocytes are often the source of the extracts used. This has produced significant results in understanding mitotic oscillation and microtubules.[50]

Embryonic development: Xenopus embryos are widely used in developmental biology. A summary of recent advances made by Xenopus research in recent years would include:

  1. Epigenetics of cell fate specification[51] and epigenome reference maps[52]
  2. microRNA in germ layer patterning and eye development[53][54]
  3. Link between Wnt signaling and telomerase[55]
  4. Development of the vasculature[56]
  5. Gut morphogenesis[57]
  6. Contact inhibition and neural crest cell migration[58] and the generation of neural crest from pluripotent blastula cells[59]
  7. Developmental fate - Role of Notch: Dorsky et al 1995 elucidated a pattern of expression followed by downregulation[60]

DNA replication: Xenopus cell-free extracts also support the synchronous assembly and the activation of origins of DNA replication. They have been instrumental in characterizing the biochemical function of the prereplicative complex, including MCM proteins.[61][62]

DNA damage response: Cell-free extracts have been instrumental to unravel the signaling pathways activated in response to DNA double-strand breaks (ATM), replication fork stalling (ATR) or DNA interstrand crosslinks (FA proteins and ATR). Notably, several mechanisms and components of these signal transduction pathways were first identified in Xenopus.[63][64][65]

Apoptosis: Xenopus oocytes provide a tractable model for biochemical studies of apoptosis. Recently, oocytes were used recently to study the biochemical mechanisms of caspase-2 activation; importantly, this mechanism turns out to be conserved in mammals.[66]

Regenerative medicine: In recent years, tremendous interest in developmental biology has been stoked by the promise of regenerative medicine. Xenopus has played a role here, as well. For example, expression of seven transcription factors in pluripotent Xenopus cells rendered those cells able to develop into functional eyes when implanted into Xenopus embryos, providing potential insights into the repair of retinal degeneration or damage.[67] In a vastly different study, Xenopus embryos was used to study the effects of tissue tension on morphogenesis,[68] an issue that will be critical for in vitro tissue engineering. Xenopus species are important model organisms for the study of spinal cord regeneration, because while capable of regeneration in their larval stages, Xenopus lose this capacity in early metamorphosis.[69]

Physiology: The directional beating of multiciliated cells is essential to development and homeostasis in the central nervous system, the airway, and the oviduct. The multiciliated cells of the Xenopus epidermis have recently been developed as the first in vivo test-bed for live-cell studies of such ciliated tissues, and these studies have provided important insights into the biomechanical and molecular control of directional beating.[70][71]

Actin: Another result from cell-free Xenopus oocyte extracts has been improved understanding of actin.[50]

Small molecule screens to develop novel therapies

Because huge amounts of material are easily obtained, all modalities of Xenopus research are now being used for small-molecule based screens.

Chemical genetics of vascular growth in Xenopus tadpoles: Given the important role of neovascularization in cancer progression, Xenopus embryos were recently used to identify new small molecules inhibitors of blood vessel growth. Notably, compounds identified in Xenopus were effective in mice.[72][73] Notably, frog embryos figured prominently in a study that used evolutionary principles to identify a novel vascular disrupting agent that may have chemotherapeutic potential.[74] That work was featured in the New York Times Science Times[75]

In vivo testing of potential endocrine disruptors in transgenic Xenopus embryos; A high-throughput assay for thyroid disruption has recently been developed using transgenic Xenopus embryos.[76]

Small molecule screens in Xenopus egg extracts: Egg extracts provide ready analysis of molecular biological processes and can rapidly screened. This approach was used to identify novel inhibitors of proteasome-mediated protein degradation and DNA repair enzymes.[77][78]

Genetic studies

While Xenopus laevis is the most commonly used species for developmental biology studies, genetic studies, especially forward genetic studies, can be complicated by their pseudotetraploid genome. Xenopus tropicalis provides a simpler model for genetic studies, having a diploid genome.

Gene expression knockdown techniques

The expression of genes can be reduced by a variety of means, for example by using antisense oligonucleotides targeting specific mRNA molecules. DNA oligonucleotides complementary to specific mRNA molecules are often chemically modified to improve their stability in vivo. The chemical modifications used for this purpose include phosphorothioate, 2'-O-methyl, morpholino, MEA phosphoramidate and DEED phosphoramidate.[79]

Morpholino oligonucleotides

Morpholino oligos are used in both X. laevis and X. tropicalis to probe the function of a protein by observing the results of eliminating the protein's activity.[79][80] For example, a set of X. tropicalis genes has been screened in this fashion.[81]

Morpholino oligos (MOs) are short, antisense oligos made of modified nucleotides. MOs can knock down gene expression by inhibiting mRNA translation, blocking RNA splicing, or inhibiting miRNA activity and maturation. MOs have proven to be effective knockdown tools in developmental biology experiments and RNA-blocking reagents for cells in culture. MOs do not degrade their RNA targets, but instead act via a steric blocking mechanism RNAseH-independent manner. They remain stable in cells and do not induce immune responses. Microinjection of MOs in early Xenopus embryos can suppress gene expression in a targeted manner.

Like all antisense approaches, different MOs can have different efficacy, and may cause off-target, non-specific effects. Often, several MOs need to be tested to find an effective target sequence. Rigorous controls are used to demonstrate specificity,[80] including:

  • Phenocopy of genetic mutation
  • Verification of reduced protein by western or immunostaining
  • mRNA rescue by adding back a mRNA immune to the MO
  • use of 2 different MOs (translation blocking and splice blocking)
  • injection of control MOs

Xenbase provides a searchable catalog of over 2000 MOs that have been specifically used in Xenopus research. The data is searchable via sequence, gene symbol and various synonyms (as used in different publications).[82] Xenbase maps the MOs to the latest Xenopus genomes in GBrowse, predicts 'off-target' hits, and lists all Xenopus literature in which the morpholino has been published.

References

  1. ^ "Xenopus". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 2020-03-22.
  2. ^ "Xenopus". Merriam-Webster Dictionary. Retrieved 2016-01-21.
  3. ^ Nenni MJ, Fisher ME, James-Zorn C, Pells TJ, Ponferrada V, Chu S, et al. (2019). "Xenbase: Facilitating the Use of Xenopus to Model Human Disease". Frontiers in Physiology. 10: 154. doi:10.3389/fphys.2019.00154. PMC 6399412. PMID 30863320.
  4. ^ a b c d Wallingford JB, Liu KJ, Zheng Y (March 2010). "Xenopus". Current Biology. 20 (6): R263–R264. doi:10.1016/j.cub.2010.01.012. PMID 20334828.
  5. ^ a b c Harland RM, Grainger RM (December 2011). "Xenopus research: metamorphosed by genetics and genomics". Trends in Genetics. 27 (12): 507–515. doi:10.1016/j.tig.2011.08.003. PMC 3601910. PMID 21963197.
  6. ^ a b c "IACUC Learning Module — Xenopus laevis". University of Arizona. Archived from the original on 2010-06-26. Retrieved 2009-10-11.
  7. ^ a b Roots C (2006). Nocturnal animals. Greenwood Press. p. 19. ISBN 978-0-313-33546-4.
  8. ^ a b c d e Passmore NI, Carruthers VC (1979). South African Frogs. Johannesburg: Witwatersrand University Press. pp. 42–43. ISBN 0-85494-525-3.
  9. ^ Tobias ML, Corke A, Korsh J, Yin D, Kelley DB (November 2010). "Vocal competition in male Xenopus laevis frogs". Behavioral Ecology and Sociobiology. 64 (11): 1791–1803. doi:10.1007/s00265-010-0991-3. PMC 3064475. PMID 21442049.
  10. ^ Tobias ML, Viswanathan SS, Kelley DB (February 1998). "Rapping, a female receptive call, initiates male-female duets in the South African clawed frog". Proceedings of the National Academy of Sciences of the United States of America. 95 (4): 1870–1875. Bibcode:1998PNAS...95.1870T. doi:10.1073/pnas.95.4.1870. PMC 19205. PMID 9465109.
  11. ^ [ Xenopus] at Fossilworks.org
  12. ^ Harland RM, Grainger RM (December 2011). "Xenopus research: metamorphosed by genetics and genomics". Trends in Genetics. 27 (12): 507–515. doi:10.1016/j.tig.2011.08.003. PMC 3601910. PMID 21963197.
  13. ^ Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, et al. (October 2016). "Genome evolution in the allotetraploid frog Xenopus laevis". Nature. 538 (7625): 336–343. Bibcode:2016Natur.538..336S. doi:10.1038/nature19840. PMC 5313049. PMID 27762356.
  14. ^ Schmid M, Evans BJ, Bogart JP (2015). "Polyploidy in Amphibia". Cytogenetic and Genome Research. 145 (3–4): 315–330. doi:10.1159/000431388. PMID 26112701.
  15. ^ Hogben L, Charles E, Slome D (1931). "Studies on the pituitary. 8. The relation of the pituitary gland to calcium metabolism and ovarian function in Xenopus". Journal of Experimental Biology. 8: 345–54. doi:10.1242/jeb.8.4.345.
  16. ^ Elkan ER (December 1938). "The Xenopus Pregnancy Test". British Medical Journal. 2 (4067): 1253–1274.2. doi:10.1136/bmj.2.4067.1253. PMC 2211252. PMID 20781969.
  17. ^ Diagnosis of Pregnancy, Louis P. Bosman, British Medical Journal 1937;2:939, 6 November 1937
  18. ^ Nuwer R (16 May 2013). "Doctors Used to Use Live African Frogs As Pregnancy Tests". Smithsonian.com. Retrieved 30 October 2018.
  19. ^ "The National Xenopus Resource". Marine Biological Laboratory. Retrieved 2022-04-05.
  20. ^ Karimi K, Fortriede JD, Lotay VS, Burns KA, Wang DZ, Fisher ME, et al. (January 2018). "Xenbase: a genomic, epigenomic and transcriptomic model organism database". Nucleic Acids Research. 46 (D1): D861–D868. doi:10.1093/nar/gkx936. PMC 5753396. PMID 29059324.
  21. ^ "Xenopus model organism database". Xenbase.org.
  22. ^ Hardwick LJ, Philpott A (December 2015). "An oncologist׳s friend: How Xenopus contributes to cancer research". Developmental Biology. Modeling Human Development and Disease in Xenopus. 408 (2): 180–187. doi:10.1016/j.ydbio.2015.02.003. PMC 4684227. PMID 25704511.
  23. ^ Gurdon JB, Lane CD, Woodland HR, Marbaix G (September 1971). "Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells". Nature. 233 (5316): 177–182. Bibcode:1971Natur.233..177G. doi:10.1038/233177a0. PMID 4939175. S2CID 4160808.
  24. ^ Reynolds FH, Premkumar E, Pitha PM (December 1975). "Interferon activity produced by translation of human interferon messenger RNA in cell-free ribosomal systems and in Xenopus oöcytes". Proceedings of the National Academy of Sciences of the United States of America. 72 (12): 4881–4885. Bibcode:1975PNAS...72.4881R. doi:10.1073/pnas.72.12.4881. PMC 388836. PMID 1061077.
  25. ^ Heasman J, Kofron M, Wylie C (June 2000). "Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach". Developmental Biology. 222 (1): 124–134. doi:10.1006/dbio.2000.9720. PMID 10885751.
  26. ^ Schäfer T, Pütz M, Lienkamp S, Ganner A, Bergbreiter A, Ramachandran H, et al. (December 2008). "Genetic and physical interaction between the NPHP5 and NPHP6 gene products". Human Molecular Genetics. 17 (23): 3655–3662. doi:10.1093/hmg/ddn260. PMC 2802281. PMID 18723859.
  27. ^ Reversade B, Escande-Beillard N, Dimopoulou A, Fischer B, Chng SC, Li Y, et al. (September 2009). "Mutations in PYCR1 cause cutis laxa with progeroid features". Nature Genetics. 41 (9): 1016–1021. doi:10.1038/ng.413. PMID 19648921. S2CID 10221927.
  28. ^ Pittman AM, Naranjo S, Webb E, Broderick P, Lips EH, van Wezel T, et al. (June 2009). "The colorectal cancer risk at 18q21 is caused by a novel variant altering SMAD7 expression". Genome Research. 19 (6): 987–993. doi:10.1101/gr.092668.109. PMC 2694486. PMID 19395656.
  29. ^ Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A, et al. (November 2006). "The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly". Cell. 127 (3): 539–552. doi:10.1016/j.cell.2006.08.053. PMID 17081976. S2CID 17769149.
  30. ^ You Z, Bailis JM, Johnson SA, Dilworth SM, Hunter T (November 2007). "Rapid activation of ATM on DNA flanking double-strand breaks". Nature Cell Biology. 9 (11): 1311–1318. doi:10.1038/ncb1651. PMID 17952060. S2CID 17389213.
  31. ^ Ben-Yehoyada M, Wang LC, Kozekov ID, Rizzo CJ, Gottesman ME, Gautier J (September 2009). "Checkpoint signaling from a single DNA interstrand crosslink". Molecular Cell. 35 (5): 704–715. doi:10.1016/j.molcel.2009.08.014. PMC 2756577. PMID 19748363.
  32. ^ Sobeck A, Stone S, Landais I, de Graaf B, Hoatlin ME (September 2009). "The Fanconi anemia protein FANCM is controlled by FANCD2 and the ATR/ATM pathways". The Journal of Biological Chemistry. 284 (38): 25560–25568. doi:10.1074/jbc.M109.007690. PMC 2757957. PMID 19633289.
  33. ^ Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, et al. (July 2007). "Non-transcriptional control of DNA replication by c-Myc". Nature. 448 (7152): 445–451. Bibcode:2007Natur.448..445D. doi:10.1038/nature05953. PMID 17597761. S2CID 4422771.
  34. ^ Dean S, Marchetti R, Kirk K, Matthews KR (May 2009). "A surface transporter family conveys the trypanosome differentiation signal". Nature. 459 (7244): 213–217. Bibcode:2009Natur.459..213D. doi:10.1038/nature07997. PMC 2685892. PMID 19444208.
  35. ^ Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, et al. (May 2009). "Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations". The New England Journal of Medicine. 360 (19): 1960–1970. doi:10.1056/NEJMoa0810276. PMC 3398803. PMID 19420365.
  36. ^ Gustina AS, Trudeau MC (August 2009). "A recombinant N-terminal domain fully restores deactivation gating in N-truncated and long QT syndrome mutant hERG potassium channels". Proceedings of the National Academy of Sciences of the United States of America. 106 (31): 13082–13087. Bibcode:2009PNAS..10613082G. doi:10.1073/pnas.0900180106. PMC 2722319. PMID 19651618.
  37. ^ Duarri A, Teijido O, López-Hernández T, Scheper GC, Barriere H, Boor I, et al. (December 2008). "Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects". Human Molecular Genetics. 17 (23): 3728–3739. doi:10.1093/hmg/ddn269. PMC 2581428. PMID 18757878.
  38. ^ Blitz IL, Biesinger J, Xie X, Cho KW (December 2013). "Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system". Genesis. 51 (12): 827–834. doi:10.1002/dvg.22719. PMC 4039559. PMID 24123579.
  39. ^ Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (December 2013). "Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis". Genesis. 51 (12): 835–843. doi:10.1002/dvg.22720. PMC 3947545. PMID 24123613.
  40. ^ Wang F, Shi Z, Cui Y, Guo X, Shi YB, Chen Y (2015-04-14). "Targeted gene disruption in Xenopus laevis using CRISPR/Cas9". Cell & Bioscience. 5 (1): 15. doi:10.1186/s13578-015-0006-1. PMC 4403895. PMID 25897376.
  41. ^ Bhattacharya D, Marfo CA, Li D, Lane M, Khokha MK (December 2015). "CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus". Developmental Biology. Modeling Human Development and Disease in Xenopus. 408 (2): 196–204. doi:10.1016/j.ydbio.2015.11.003. PMC 4684459. PMID 26546975.
  42. ^ Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, et al. (January 2009). "FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination". Cell. 136 (1): 123–135. doi:10.1016/j.cell.2008.10.051. PMID 19135894. S2CID 16458957.
  43. ^ Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, et al. (February 2007). "Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation". Science. 315 (5813): 840–843. Bibcode:2007Sci...315..840C. doi:10.1126/science.1135961. PMID 17234915. S2CID 83962686.
  44. ^ Fuentealba LC, Eivers E, Ikeda A, Hurtado C, Kuroda H, Pera EM, De Robertis EM (November 2007). "Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal". Cell. 131 (5): 980–993. doi:10.1016/j.cell.2007.09.027. PMC 2200633. PMID 18045539.
  45. ^ Kim NG, Xu C, Gumbiner BM (March 2009). "Identification of targets of the Wnt pathway destruction complex in addition to beta-catenin". Proceedings of the National Academy of Sciences of the United States of America. 106 (13): 5165–5170. Bibcode:2009PNAS..106.5165K. doi:10.1073/pnas.0810185106. PMC 2663984. PMID 19289839.
  46. ^ Kaláb P, Pralle A, Isacoff EY, Heald R, Weis K (March 2006). "Analysis of a RanGTP-regulated gradient in mitotic somatic cells". Nature. 440 (7084): 697–701. Bibcode:2006Natur.440..697K. doi:10.1038/nature04589. PMID 16572176. S2CID 4398374.
  47. ^ Tsai MY, Wang S, Heidinger JM, Shumaker DK, Adam SA, Goldman RD, Zheng Y (March 2006). "A mitotic lamin B matrix induced by RanGTP required for spindle assembly". Science. 311 (5769): 1887–1893. Bibcode:2006Sci...311.1887T. doi:10.1126/science.1122771. PMID 16543417. S2CID 12219529.
  48. ^ Ma L, Tsai MY, Wang S, Lu B, Chen R, Yates JR, et al. (March 2009). "Requirement for Nudel and dynein for assembly of the lamin B spindle matrix". Nature Cell Biology. 11 (3): 247–256. doi:10.1038/ncb1832. PMC 2699591. PMID 19198602.
  49. ^ Emanuele MJ, Stukenberg PT (September 2007). "Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment". Cell. 130 (5): 893–905. doi:10.1016/j.cell.2007.07.023. PMID 17803911. S2CID 17520550.
  50. ^ a b Noireaux V, Liu AP (June 2020). "The New Age of Cell-Free Biology". Annual Review of Biomedical Engineering. Annual Reviews. 22 (1): 51–77. doi:10.1146/annurev-bioeng-092019-111110. PMID 32151150. S2CID 212652742.
  51. ^ Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Françoijs KJ, Stunnenberg HG, Veenstra GJ (September 2009). "A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos". Developmental Cell. 17 (3): 425–434. doi:10.1016/j.devcel.2009.08.005. PMC 2746918. PMID 19758566.
  52. ^ Hontelez S, van Kruijsbergen I, Georgiou G, van Heeringen SJ, Bogdanovic O, Lister R, Veenstra GJ (December 2015). "Embryonic transcription is controlled by maternally defined chromatin state". Nature Communications. 6: 10148. Bibcode:2015NatCo...610148H. doi:10.1038/ncomms10148. PMC 4703837. PMID 26679111.
  53. ^ Walker JC, Harland RM (May 2009). "microRNA-24a is required to repress apoptosis in the developing neural retina". Genes & Development. 23 (9): 1046–1051. doi:10.1101/gad.1777709. PMC 2682950. PMID 19372388.
  54. ^ Rosa A, Spagnoli FM, Brivanlou AH (April 2009). "The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection". Developmental Cell. 16 (4): 517–527. doi:10.1016/j.devcel.2009.02.007. PMID 19386261.
  55. ^ Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, et al. (July 2009). "Telomerase modulates Wnt signalling by association with target gene chromatin". Nature. 460 (7251): 66–72. Bibcode:2009Natur.460...66P. doi:10.1038/nature08137. PMC 4349391. PMID 19571879.
  56. ^ De Val S, Chi NC, Meadows SM, Minovitsky S, Anderson JP, Harris IS, et al. (December 2008). "Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors". Cell. 135 (6): 1053–1064. doi:10.1016/j.cell.2008.10.049. PMC 2782666. PMID 19070576.
  57. ^ Li Y, Rankin SA, Sinner D, Kenny AP, Krieg PA, Zorn AM (November 2008). "Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling". Genes & Development. 22 (21): 3050–3063. doi:10.1101/gad.1687308. PMC 2577796. PMID 18981481.
  58. ^ Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, et al. (December 2008). "Contact inhibition of locomotion in vivo controls neural crest directional migration". Nature. 456 (7224): 957–961. Bibcode:2008Natur.456..957C. doi:10.1038/nature07441. PMC 2635562. PMID 19078960.
  59. ^ Buitrago-Delgado E, Nordin K, Rao A, Geary L, LaBonne C (June 2015). "NEURODEVELOPMENT. Shared regulatory programs suggest retention of blastula-stage potential in neural crest cells". Science. 348 (6241): 1332–1335. doi:10.1126/science.aaa3655. PMC 4652794. PMID 25931449.
  60. ^ Gaiano N, Fishell G (2002). "The role of notch in promoting glial and neural stem cell fates". Annual Review of Neuroscience. Annual Reviews. 25 (1): 471–490. doi:10.1146/annurev.neuro.25.030702.130823. PMID 12052917. S2CID 15691580.
  61. ^ Tsuji T, Lau E, Chiang GG, Jiang W (December 2008). "The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control". Molecular Cell. 32 (6): 862–869. doi:10.1016/j.molcel.2008.12.005. PMC 4556649. PMID 19111665.
  62. ^ Xu X, Rochette PJ, Feyissa EA, Su TV, Liu Y (October 2009). "MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication". The EMBO Journal. 28 (19): 3005–3014. doi:10.1038/emboj.2009.235. PMC 2760112. PMID 19696745.
  63. ^ Ben-Yehoyada M, Wang LC, Kozekov ID, Rizzo CJ, Gottesman ME, Gautier J (September 2009). "Checkpoint signaling from a single DNA interstrand crosslink". Molecular Cell. 35 (5): 704–715. doi:10.1016/j.molcel.2009.08.014. PMC 2756577. PMID 19748363.
  64. ^ Räschle M, Knipscheer P, Knipsheer P, Enoiu M, Angelov T, Sun J, et al. (September 2008). "Mechanism of replication-coupled DNA interstrand crosslink repair". Cell. 134 (6): 969–980. doi:10.1016/j.cell.2008.08.030. PMC 2748255. PMID 18805090.
  65. ^ MacDougall CA, Byun TS, Van C, Yee MC, Cimprich KA (April 2007). "The structural determinants of checkpoint activation". Genes & Development. 21 (8): 898–903. doi:10.1101/gad.1522607. PMC 1847708. PMID 17437996.
  66. ^ Nutt LK, Buchakjian MR, Gan E, Darbandi R, Yoon SY, Wu JQ, et al. (June 2009). "Metabolic control of oocyte apoptosis mediated by 14-3-3zeta-regulated dephosphorylation of caspase-2". Developmental Cell. 16 (6): 856–866. doi:10.1016/j.devcel.2009.04.005. PMC 2698816. PMID 19531356.
  67. ^ Viczian AS, Solessio EC, Lyou Y, Zuber ME (August 2009). "Generation of functional eyes from pluripotent cells". PLOS Biology. 7 (8): e1000174. doi:10.1371/journal.pbio.1000174. PMC 2716519. PMID 19688031.
  68. ^ Dzamba BJ, Jakab KR, Marsden M, Schwartz MA, DeSimone DW (March 2009). "Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization". Developmental Cell. 16 (3): 421–432. doi:10.1016/j.devcel.2009.01.008. PMC 2682918. PMID 19289087.
  69. ^ Beattie MS, Bresnahan JC, Lopate G (October 1990). "Metamorphosis alters the response to spinal cord transection in Xenopus laevis frogs". Journal of Neurobiology. 21 (7): 1108–1122. doi:10.1002/neu.480210714. PMID 2258724.
  70. ^ Park TJ, Mitchell BJ, Abitua PB, Kintner C, Wallingford JB (July 2008). "Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells". Nature Genetics. 40 (7): 871–879. doi:10.1038/ng.104. PMC 2771675. PMID 18552847.
  71. ^ Mitchell B, Jacobs R, Li J, Chien S, Kintner C (May 2007). "A positive feedback mechanism governs the polarity and motion of motile cilia". Nature. 447 (7140): 97–101. Bibcode:2007Natur.447...97M. doi:10.1038/nature05771. PMID 17450123. S2CID 4415593.
  72. ^ Kälin RE, Bänziger-Tobler NE, Detmar M, Brändli AW (July 2009). "An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis". Blood. 114 (5): 1110–1122. doi:10.1182/blood-2009-03-211771. PMC 2721788. PMID 19478043.
  73. ^ Ny A, Koch M, Vandevelde W, Schneider M, Fischer C, Diez-Juan A, et al. (September 2008). "Role of VEGF-D and VEGFR-3 in developmental lymphangiogenesis, a chemicogenetic study in Xenopus tadpoles". Blood. 112 (5): 1740–1749. doi:10.1182/blood-2007-08-106302. PMID 18474726. S2CID 14663578.
  74. ^ Cha HJ, Byrom M, Mead PE, Ellington AD, Wallingford JB, Marcotte EM (2012-01-01). "Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent". PLOS Biology. 10 (8): e1001379. doi:10.1371/journal.pbio.1001379. PMC 3423972. PMID 22927795.
  75. ^ Zimmer C (2012-08-21). "Gene Tests in Yeast Aid Work on Cancer". The New York Times.
  76. ^ Fini JB, Le Mevel S, Turque N, Palmier K, Zalko D, Cravedi JP, Demeneix BA (August 2007). "An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption". Environmental Science & Technology. 41 (16): 5908–5914. Bibcode:2007EnST...41.5908F. doi:10.1021/es0704129. PMID 17874805.
  77. ^ Dupré A, Boyer-Chatenet L, Sattler RM, Modi AP, Lee JH, Nicolette ML, Kopelovich L, Jasin M, Baer R, Paull TT, Gautier J (February 2008). "A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex". Nature Chemical Biology. 4 (2): 119–25. doi:10.1038/nchembio.63. PMC 3065498. PMID 18176557.
  78. ^ Landais I, Sobeck A, Stone S, LaChapelle A, Hoatlin ME (February 2009). "A novel cell-free screen identifies a potent inhibitor of the Fanconi anemia pathway". International Journal of Cancer. 124 (4): 783–92. doi:10.1002/ijc.24039. PMID 19048618. S2CID 33589304.
  79. ^ a b Dagle JM, Weeks DL (December 2001). "Oligonucleotide-based strategies to reduce gene expression". Differentiation; Research in Biological Diversity. 69 (2–3): 75–82. doi:10.1046/j.1432-0436.2001.690201.x. PMID 11798068.
  80. ^ a b Blum M, De Robertis EM, Wallingford JB, Niehrs C (October 2015). "Morpholinos: Antisense and Sensibility". Developmental Cell. 35 (2): 145–149. doi:10.1016/j.devcel.2015.09.017. PMID 26506304.
  81. ^ Rana AA, Collart C, Gilchrist MJ, Smith JC (November 2006). "Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides". PLOS Genetics. 2 (11): e193. doi:10.1371/journal.pgen.0020193. PMC 1636699. PMID 17112317.
    "A Xenopus tropicalis antisense morpholino screen". Gurdon Institute. 4 March 2014. Archived from the original on 12 June 2018. Retrieved 17 January 2007.
  82. ^ Xenbase

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Xenopus: Brief Summary

provided by wikipedia EN

Xenopus (/ˈzɛnəpəs/) (Gk., ξενος, xenos=strange, πους, pous=foot, commonly known as the clawed frog) is a genus of highly aquatic frogs native to sub-Saharan Africa. Twenty species are currently described within it. The two best-known species of this genus are Xenopus laevis and Xenopus tropicalis, which are commonly studied as model organisms for developmental biology, cell biology, toxicology, neuroscience and for modelling human disease and birth defects.

The genus is also known for its polyploidy, with some species having up to 12 sets of chromosomes.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Xenopus ( Spanish; Castilian )

provided by wikipedia ES

Xenopus (L., pie extraño) es un género de ranas carnívoras de la familia Pipidae naturales del África subsahariana (y un registro aislado en el noroeste de Chad). Son todas acuáticas, con las plantas de las patas palmeadas, al contrario de los dedos, que no lo son, y con tres uñas alargadas a modo de garra en tres dedos de cada pata trasera.[1]​ La especie más conocida de este género es Xenopus laevis, que se estudia habitualmente en trabajos de investigación como modelo experimental.

Especies

Se reconocen las siguientes 29 especies según ASW:[2]

Xenopus como modelo experimental

Xenopus es muy utilizado como modelo científico para el estudio de la expresión de genes y proteínas e inhibición de genes (knockdown). Al tener un tamaño de 1 mm de diámetro, los oocitos de Xenopus son lo suficientemente grandes como para permitir un estudio más fácil y detallado que en células de menor tamaño. Se puede introducir ARN procedente de otros organismos mediante microinyecciones en los oocitos, estudiándose la expresión de sus genes mediante técnicas de biología molecular o electrofisiológicas.

Sinonimia

  • Dactylethra Cuvier, 1829
  • Tremeropugus Smith, 1831[4]
  • Silurana Gray, 1864

Referencias

  1. Terry Gampper's Xenopus Page
  2. Frost, D.R. «Xenopus ». Amphibian Species of the World: an Online Reference. Version 6.1. (en inglés). Nueva York, EEUU: Museo Americano de Historia Natural. Consultado el 28 de diciembre de 2015.
  3. a b c d e f Evans, B. J., T. F. Carter, E. Greenbaum, V. Gvoždík, D. B. Kelley, P. J. McLaughlin, O. S. G. Pauwels, D. M. Portik, E. Stanley, R. C. Tinsley, M. L. Tobias & D. C. Blackburn. 2015. Genetics, morphology, advertisement calls, and historical records distinguish six new polyploid species of African Clawed Frog (Xenopus, Pipidae) from West and Central Africa. PLoS (Public Library of Science) One 10(12): e0142823: 1–51.
  4. Sinónimos en Wikispecies
 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Xenopus: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

Xenopus (L., pie extraño) es un género de ranas carnívoras de la familia Pipidae naturales del África subsahariana (y un registro aislado en el noroeste de Chad). Son todas acuáticas, con las plantas de las patas palmeadas, al contrario de los dedos, que no lo son, y con tres uñas alargadas a modo de garra en tres dedos de cada pata trasera.​ La especie más conocida de este género es Xenopus laevis, que se estudia habitualmente en trabajos de investigación como modelo experimental.

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Silurana ( Basque )

provided by wikipedia EU

Silurana anfibio genero bat da, Anura ordenaren barruko Pipidae familian sailkatua.

Erreferentziak

Ikus, gainera

(RLQ=window.RLQ||[]).push(function(){mw.log.warn("Gadget "ErrefAurrebista" was not loaded. Please migrate it to use ResourceLoader. See u003Chttps://eu.wikipedia.org/wiki/Berezi:Gadgetaku003E.");});
license
cc-by-sa-3.0
copyright
Wikipediako egileak eta editoreak
original
visit source
partner site
wikipedia EU

Silurana: Brief Summary ( Basque )

provided by wikipedia EU

Silurana anfibio genero bat da, Anura ordenaren barruko Pipidae familian sailkatua.

license
cc-by-sa-3.0
copyright
Wikipediako egileak eta editoreak
original
visit source
partner site
wikipedia EU

Xenopus ( Basque )

provided by wikipedia EU

Xenopus anfibio genero bat da, Anura ordenaren barruko Pipidae familian sailkatua.

Erreferentziak

Ikus, gainera

(RLQ=window.RLQ||[]).push(function(){mw.log.warn("Gadget "ErrefAurrebista" was not loaded. Please migrate it to use ResourceLoader. See u003Chttps://eu.wikipedia.org/wiki/Berezi:Gadgetaku003E.");});
license
cc-by-sa-3.0
copyright
Wikipediako egileak eta editoreak
original
visit source
partner site
wikipedia EU

Xenopus: Brief Summary ( Basque )

provided by wikipedia EU

Xenopus anfibio genero bat da, Anura ordenaren barruko Pipidae familian sailkatua.

license
cc-by-sa-3.0
copyright
Wikipediako egileak eta editoreak
original
visit source
partner site
wikipedia EU

Xenopus ( French )

provided by wikipedia FR

Xenopus est un genre d'amphibiens de la famille des Pipidae[1].

Parmi de nombreuses espèces, la plus connue est Xenopus laevis, encore appelée Xénope commun ou Dactylètre du Cap. Elle est étudiée comme organisme modèle.

Description

Les espèces de ce genre sont de petites grenouilles ternes dépourvues de langue. Leur corps est brunâtre dessus et rosâtre dessous. Les albinos sont naturellement rares. Les pattes postérieures sont musculeuses et palmées et leurs trois doigts se terminent par des griffes cornées.

Les femelles de X. laevis peuvent atteindre 120 à 140 mm et les mâles de 70 à 100 mm.

Répartition

Les 29 espèces de ce genre se rencontrent originellement en Afrique subsaharienne avec une référence isolée dans le nord-est du Tchad[1].

Xenopus laevis a été introduite en Europe, en Amérique et en Indonésie. En France, il existe une population dans les Deux-Sèvres. En 1930 un laboratoire en a laissé échapper et elles se sont multipliées depuis. On peut ainsi en trouver dans les environs de Thouars[2].

Habitat

Elles vivent dans des étangs et des mares. Comme le protoptère, elles peuvent s'enterrer dans la boue pour estiver.

Éthologie

Ce sont des espèces aquatiques qui n'émergent que pour respirer. Leur odorat est bon. Les doigts des pattes antérieures et une ligne latérale leur assurent une bonne perception tactile. Ce sont de bons nageurs. Comme beaucoup d'amphibiens, elles synthétisent des substances leur permettant de lutter contre les maladies, telles des antibiotiques et des fongicides.

Reproduction

Le cri du mâle ressemble à un cliquetis. Lors de l'accouplement, généralement nocturne, les ovules pondus par la femelle sont aussitôt fécondés par le mâle. Les parents peuvent manger leurs œufs ou leurs têtards, ce qui s'apparente à une situation de conflit générationnel semblable au conflit sexuel. Les femelles peuvent pondre pendant toute une journée entre 300 et 1 000 œufs de 1 à 1,3 mm de long chez Xenopus laevis. Selon les espèces, elles deviennent matures entre trois mois et deux ans.

Élevage

 src=
Un œuf au début du développement embryonnaire.

Xenopus laevis, organisme modèle qui a été le plus utilisé en biologie, étant allotétraploïde (36 chromosomes) et ayant un temps de génération de deux ans, tend à être délaissé au profit de Xenopus tropicalis, qui est diploïde (20 chromosomes) et se reproduit cinq fois plus rapidement.

Animaux de laboratoire mais aussi d'agrément, elles s'élèvent et se reproduisent facilement en aquarium. Elles nécessitent environ cinq litres par individu, une eau calme maintenue à environ 22 °C et dont la hauteur ne dépasse pas une trentaine de centimètres. Leur peau étant fragile, il faut éviter les matériaux coupants, tels que les roches à arêtes vives ou le gravier anguleux. La présence de végétaux n'est pas obligatoire et l'éclairage doit être tamisé. On peut les nourrir quotidiennement avec des aliments pour poissons, des morceaux de poisson, moule ou crevette, des chironomes, des daphnies, des gammares, des tubifex, etc.

L'espèce Xenopus laevis est abondamment utilisée dans les laboratoires de biologie pour étudier le développement embryonnaire, le cycle cellulaire (mitose et méiose) ainsi que les mécanismes mis en place par la cellule lorsque l'ADN est endommagé. Il a permis notamment l'identification et la caractérisation du moteur moléculaire permettant l'entrée en mitose, le MPF (M-phase promoting factor) ainsi que le rôle de l'aquaporine.

Lors de la méiose, deux divisions cellulaires successives se suivent sans réplication de l’ADN et conduisent à la production de cellules germinales haploïdes (ovocytes ou spermatozoïdes).

L’ovocyte de Xénope est une cellule polarisée présentant un hémisphère animal très pigmenté et un hémisphère végétatif dépigmenté (Figure 1).

Maturation de l'ovocyte

 src=
la maturation de l’ovocyte de Xénope. A) Ovocyte immature. B) Ovocyte matures présentant une tache de maturation au pôle animal.

Au cours de l’ovogenèse, qui peut être subdivisée en six stades appelés stades de Dumont, l’ovocyte accumule des réserves énergétiques (sucres, lipides…) et informatives (ARN, protéines). Au terme de sa croissance, l’ovocyte de stade VI ou ovocyte immature est bloqué en prophase de première division de méiose. Ce blocage est levé par la progestérone synthétisée par les cellules folliculaires environnantes. L’ovocyte entre alors dans le processus de maturation ovocytaire : il achève la première division de méiose, débute la deuxième jusqu’à un nouveau blocage qui survient en métaphase de deuxième division. Cet arrêt en métaphase II, caractéristique de l’ovocyte mature (figure 1B) sera levé par la fécondation. D’un point de vue morphologique, il est facile de différencier un ovocyte immature d’un ovocyte à maturité. En effet, la maturation s’accompagne de l’apparition d’une tache dépigmentée, appelée tache de maturation, au pôle animal de l’ovocyte. D’un point de vue moléculaire, la maturation est caractérisée par l’activation du MPF (M-phase Promoting Factor ; facteur universel d’entrée et de sortie de phase M) et de la voie p42 MAPK (Mitogen Activated Protein Kinase).

Liste des espèces

Selon Amphibian Species of the World (11 juin 2017)[3] :

Publication originale

  • Wagler, 1827 : I. Über das Leuchten einiger Batrachier. Isis von Oken, vol. 20, p. 726-728 (texte intégral).

Notes et références

  1. a et b Amphibian Species of the World, consulté lors d'une mise à jour du lien externe
  2. Ces informations sont relayées sur des sites Internet comme http://www.poitou-charentes-nature.asso.fr/Xenope-du-Cap.html Si la présence de Xenopus laevis est reconnue dans le Poitou, la date de son introduction fait discussion : une dizaine d'années pour l'un, les années 1930 pour l'autre.
  3. Amphibian Species of the World, consulté le 11 juin 2017
license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Xenopus: Brief Summary ( French )

provided by wikipedia FR

Xenopus est un genre d'amphibiens de la famille des Pipidae.

Parmi de nombreuses espèces, la plus connue est Xenopus laevis, encore appelée Xénope commun ou Dactylètre du Cap. Elle est étudiée comme organisme modèle.

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Xenopus ( Galician )

provided by wikipedia gl Galician

Xenopus (do grego ξενος, xenos, 'estraño', πους, pous, 'pé') é un xénero de ras de vida moi acuática nativas da África subsahariana. Describíronse polo momento 20 especies dentro deste xénero. As dúas especies mellor coñecidas son Xenopus laevis e Xenopus tropicalis, que son frecuentemente estudados como organismos modelo para a bioloxía do desenvolvemento, bioloxía celular, toxicoloxía, neurociencia e como modelo de doenzas humanas e defectos conxénitos.[1][2]

O xénero é tamén coñecido pola súa poliploidía, e algunhas especies teñen 12 xogos de cromosomas.

Características

Descrición

Todas as especies de Xenopus teñen corpos aplanados, algo ovoides e hidrodinámicos, cunha pel moi escorregadiza debido ao seu recubrimento de moco protector.[3] A pel desta ra é lisa, pero cunha liña lateral sensorial que ten unha aparencia de liña. Estas ras son todas excelentes nadadoras e teñen as dedas dos pés completamente palmadas e potentes, aínda que os dedos das mans carecen de membrana interdixital. Tres das dedas de cada pé teñen unhas garras ben visibles.

Os ollos destas ras están na parte superior da cabeza, mirando cara adiante. As pupilas son circulares. Non teñen pálpebras móbiles, nin lingua móbil (a lingua está completamente pegada ao solo da boca[3]), nin membrana timpánica (igual que ocorre en Pipa pipa[4]).[5]

A diferenza da maioría dos anfibios, carecen de haptoglobina no seu sangue.[5]

Comportamento

As especies de Xenopus son totalmente acuáticas, aínda que se observou que migran a terra para chegar a corpos de auga próximos durante os tempos de seca ou con chuvia forte. Atópanse xeralmente en lagos, ríos, pantanos, pozas de regatos, e encoros feitos polo home.[5]

As ras adultas son predadoras e preeiras, e como non poden sacar a lingua, utilizan os seus pequenos brazos para axudarse durante a alimentación. Como tamén carecen de saco vocal, emiten clics (breves pulsos de son) baixo a auga (de novo igual que Pipa pipa).[4] Os machos establecen unha xerarquía de dominancia social na cal hai un macho que é o que ten principalmente o dereito de facer chamadas de advertencia.[6] As femias de moitas especies producen unha chamada de liberación, e as femias de Xenopus laevis producen unha chamada adicional cando son sexualmente receptivas e están preparadas para poñer ovos.[7] As especies de Xenopus son tamén activas durante as horas de lusco-fusco.[5]

Durante a estación de apareamento, os machos desenvolven almofadiñas nupciais con forma de crista e cor negra nos dedos para facilitar o agarre da femia. O abrazo de apareamento (amplexo) é inguinal, xa que agarran a femia pola cintura.[5]

Especies

 src=
Unha femia de Xenopus laevis cunha masa de ovos acabados de poñer e un macho de Xenopus tropicalis
  • X. amieti
  • X. andrei
  • X. borealis
  • X. boumbaensis
  • X. clivii
  • X. fraseri
  • X. gilli
  • X. itombwensis
  • X. laevis
  • X. largeni
  • X. lenduensis
  • X. longipes
  • X. muelleri
  • X. petersii
  • X. pygmaeus
  • X. ruwenzoriensis
  • X. tropicalis
  • X. vestitus
  • X. victorianus
  • X. wittei

Organismo modelo para a investigación médica

Como moitos outros anuros, utilízanse a miúdo no laboratorio como suxeitos de investigación.[3] Os embrións de Xenopus e os seus ovos son un sistema modelo popular para unha ampla variedade de estudos biolóxicos.[1][2] Este animal utilízase debido á súa poderosa combinación da facilidade do seu uso experimental e as súas máis estreitas relacións evolutivas cos humanos, polo menos comparado con outros moitos organismos modelo.[1][2]

Xenopus leva sendo unha importante ferramenta para estudos in vivo en bioloxía molecular, celular e do desenvolvemento de animais vertebrados.[8] Porén, a ampla duración do uso de Xenopus en investigación nace do feito adicional de que os extractos libres de célula feitos a partir de Xenopus son un excelente sistema in vitro para estudos de aspectos fundamentais de bioloxía celular e molecular. Así, Xenopus é o único sistema modelo de vertebrado que permite un alto rendemento de análises in vivo da función xénica e bioquímica de alto rendemento. Ademais, os ovocitos de Xenopus son un sistema líder para estudos da fisioloxía das canles de transporte iónico.[1] Xenopus é tamén un sistema único para análises de evolución de xenomas e a duplicación xenómica completa en vertebrados,[9] xa que as diferentes especies de Xenopus forman unha serie de ploidía formada por hibridación interespecífica.[10]

Xenbase [11] é o base de datos de organismo modelo tanto para Xenopus laevis coma para Xenopus tropicalis.[12]

Investigación de xenes humanos de enfermidades

Todos os modos de investigación de Xenopus (embrións, extractos libres de células e ovocitos) son utilizados comunmente en estudos directos de xenes de doenzas humanas e para estudar a ciencia básica que subxace no inicio e progresión do cancro.[13] Os embrións de Xenopus para estudos in vivo da función de xenes de enfermidades humanas: os embrións de Xenopus son grandes e doados de manipular, e ademais, poden obterse miles de embrións nun só día. De feito, Xenopus foi o primeiro animal vertebrado para o cal se desenvolveron métodos que permitían unha rápida análise da función xénica usando a alteración da expresión (por inxección de ARNm [14]). A inxección de ARNm de Xenopus levou á clonación do interferón.[15] Ademais, o uso de oligonucleótidos morfolino antisentido para realizar knockdowns de xenes en embrións de vertebrados, que é agora amplamente usado, foi desenvolvido primeiro por Janet Heasman usando Xenopus.[16]

Nos últimos anos estes enfoques foron moi importantes en estudos de xenes de doenzas humanas. O mecanismo de acción de varios xenes mutados nos trastornos de ril quístico humano (por exemplo a nefronoftise) foron amplamente estudados en embrións de Xenopus, o que serviu para aclarar a ligazón entre estes trastornos, a cilioxénese e a sinalización Wnt.[17] Os embrións de Xenopus proporcionaron tamén unha rápida forma de probar e validar novos xenes de enfermidades que se foron descubrindo. Por exemplo, os estudos en Xenopus confirmaron e diluciaron o papel de PYCR1 na cute laxa con características proxeroides.[18]

Xenopus transxénico para o estudo da regulación transcricional de xenes de enfermidades humanas: Os embrións de Xenopus desenvólvense rapidamente, así a transxénese en Xenopus é un método rápido e efectivo para analizar secuencias xenómicas reguladoras. Nun estudo recente, revelouse que as mutacións no locus SMAD7 estaban asociadas co cancro colorrectal humano. Un dato interesante é que as mutacións se encontran en secuencias conservadas pero non codificantes, o que suxire que estas mutacións exercen un impacto sobre os padróns de transcrición de SMAD7. Para comprobar estas hipóteses, os autores usaron a tranxénese de Xenopus, e revelaron que esta rexión xenómica orixinaba a expresión da GFP no intestino posterior. Ademais, os transxénicos feitos coa versión mutante desta rexión mostraban unha expresión substancialmente menor no intestino posterior.[19]

Extractos libres de células de Xenopus para estudos bioquímicos de proteínas codificados por xenes humanos de enfermidades: unha vantaxe única do sistema de Xenopus é que os extractos citosólicos conteñen tanto proteínas solubles citoplásmicas coma nucleares (incluíndo proteínas cromatínicas). Isto está en contraste cos extractos celulares preparados a partir de células somáticas con compartimentos celulares xa diferenciados. Os extractos de ovos de Xenopus proporcionaron moita información sobre a bioloxía básica das células, especialmente sobre a división celular e as transaccións de ADN asociadas con ela (ver máis abaixo).

Os estudos feitos en extractos de ovos de Xenopus tamén serviron para dilucidar os mecanismos de acción de xenes de enfermidades humanas asociadas con inestabilidade xenética e elevado risco de cancro, como a ataxia telanxiectasia, cancro de ovario e de mama de BRCA1 herdado, síndrome de rotura de Nijmegen Nbs1, síndrome de Rothmund-Thomson RecQL4, oncoxene c-Myc e proteínas FANC (de anemia de Fanconi).[20][21][22][23][24]

Ovocitos de Xenopus para estudos de expresión xénica e actividade de canles iónicas relacionadas cos doenzas humanas: Outra vantaxe de Xenopus é a capacidade de ensaiar de forma rapida e doada a actividade de canles e proteínas de transporte usando a expresión en ovocitos. Esta aplicación foi moi útil para a comprensión de enfermidades humanas, como os estudos relacionados coa transmisión do tripanosoma,[25] epilepsia con ataxia e xordeira neurosensorial,[26] arritmia cardíaca catastrófica (síndrome da QT longa),[27] e leucoencefalopatía megaloencefálica.[28]

A edición de xenes polo sistema CRISPR/CAS foi demostrada recentemente en Xenopus tropicalis[29][30] e Xenopus laevis.[31] Esta técnica está utilizándose para facer cribados dos efectos de xenes de enfermidades humanas en Xenopus e o sistema é suficientemente eficiente para estudar os efectos nos mesmos embrións que foron manipulados.[32]

Investigación de procesos biolóxicos fundamentais

Transdución de sinais: Os embrións e extractos libres de células de Xenopus son amplamente usados para a investigación básica en transdución de sinais. Nos últimos anos, os embrións de Xenopus proporcionaron información sobre os mecanismos do TGF-beta e a transdución de sinais Wnt. Por exemplo, os embrións de Xenopus foron utilizados para identificar os encimas que controlan a ubiquitinación de Smad4,[33] e para demostrar as ligazóns directas entre as vías de sinalización da superfamilia do TGF-beta e outras redes importantes, como a vía da quinase MAP[34] e a vía Wnt.[35] Ademais, os novos métodos que usaban extractos de ovos revelaron novas e importantes dianas do complexo de destrución Wnt/GSK3.[36]

División celular: Os extractos de ovos de Xenopus permitiron o estudo de moitos eventos celulares complicados in vitro. Como o citosol dos ovos pode soportar ciclos sucesivos entre a mitose e a interfase in vitro, foi esencial para diversos estudos da división celular. Por exemplo, encontrouse primeiro que a pequena GTPase Ran regulaba o transporte nuclear na interfase, pero os extractos de ovos de Xenopus revelaron un papel fundamental exercido pola GTPase Ran na mitose independentemente do seu papel no transporte nuclear na interfase.[37] De xeito similar, os extractos libres de células utilizáronse como modelo de ensamblaxe da envoltura nuclear a partir da cromatina, o que revelou a función da GTPase Ran na regulación da reensamblaxe da envoltura nuclear despois da mitose.[38] Máis recentemente, usando extractos de ovos de Xenopus, era posible demostrar a función específica da mitose da lamina B nuclear na regulación da morfoxénese do fuso[39] e para identificar novas proteínas que median a unión do cinetocoro aos microtúbulos.[40]

Desenvolvemento embrionario: Os embrións de Xenopus foron amplamente usados na bioloxía do desenvolvemento. Un sumario dos recentes avances feitos por medio de investigacións en Xenopus en anos recentes inclúe:

  1. Epixenética da especificación do destino que vai ter a célula[41] e mapas de referencia epixenómicos[42]
  2. microARN nos padróns da capa xerminal e desenvolvemeno do ollo[43][44]
  3. Ligazón entre a sinalización Wnt e a telomerase[45]
  4. Desenvolvemento da vasculatura[46]
  5. Morfoxénese do tracto gastrointestinal[47]
  6. Inhibición de contacto e migración das células da crista neural[48] e a xeración da crista neural a partir de células da blástula pluripotentes[49]

Replicación do ADN: os extractos libres de células de Xenopus tamén soportan estudos da ensamblaxe sincronizada e a activación das orixes da replicación do ADN. Foron instrumentais para caracterizar a función bioquímica do complexo prerreplicativo, incluíndo as proteinas MCM.[50][51]

Resposta aos danos no ADN: os extractos libres de células foron esenciais para desvelar as vías de sinalización que se activan en resposta a roturas de dobre febra no ADN (ATM), detención da forcada de replicación (ATR) ou ligazóns cruzadas entre febras do ADN (proteínas FA e ATR). Especialmente, varios mecanismos e compoñentes destas vías de transdución de sinais foron identificados primeiramente en Xenopus.[52][53][54]

Apoptose: os ovocitos de Xenopus proporcionan un modelo axeitado para estudos bioquímicos da apoptose. Recentemente, os ovocitos foron utilizados para estudar os mecanismos bioquímicos da activación da caspase-2; un dato importante é que este mecanismo está conservado nos mamíferos.[55]

Medicina rexenerativa: en anos recentes, o tremendo interese na bioloxía do desenvolvemento acrecentouse pola promesa de aplicala á medicina rexenerativa. Xenopus xogou tamén un papel aquí. Por exemplo, a expresión de sete factores de transcrición en células pluripotentes de Xenopus fixeron que estas células puidesen desenvolverse en ollos funcionais cando se implantaban en embrións de Xenopus, proporcionando información sobre a reparación da dexeneración ou dano retinal.[56] Nun estudo completamente diferente, os embrións de Xenopus foron utilizados para estudar os efectos da tensión dos tecidos na morfoxénese,[57] un aspecto que é esencial para a enxeñaría de tecidos in vitro.

Fisioloxía: o batido direccional dos cilios de células multiciliadas é esencial para o desenvolvemento e homeostase no sistema nervioso central, as vías aéreas e o oviduto. As células multiciliadas da epiderme de Xenopus desenvolvéronse recentemente como o primeiro banco de probas in vivo para estudos con células vivas de ditos tecidos ciliados, e estes estudos proporcionaron moitos datos sobre o control molecular e biomecánico do batido direccional.[58][59]

Cribados de pequenas moléculas para desenvolver novas terapias

Debido á enorme cantidade de material que se obtén doadamente, todas as modalidades de investigación en Xenopus están agora sendo utilizadas para cribados baseados en pequenas moléculas.

A xenética química de crecemento vascular en cágados de Xenopus: Dada a importancia da neovascularización na progresión do cancro, os embrións de Xenopus foron utilizados recentemente para identificar novas pequenas moléculas inhibidoras do crecemento dos vasos sanguíneos. Os compostos identificados en Xenopus foron efectivos en ratos.[60][61] Os embrións de ras foron moi importantes nun estudo que utilizou principios evolutivos para identificar un novo axente disruptor vascular que pode ter un potencial quimioterapéutico.[62][63]

Probas in vivo de potenciais disruptores endócrinos en embrións transxénicos de Xenopus: un ensaio de alto rendemento para a disrupción tiroide foi desenvolvido recentemente usando embrións transxénicos de Xenopus.[64]

Cribados de pequenas moléculas en extractos de ovos de Xenopus: os extractos de ovos proporcionan rápidas análises de procesos de bioloxía molecular e poden ser cribados rapidamente. Este enfoque foi utilizado para identificar novos inhibidores de degradación de proteínas mediados polo proteasoma e encimas de reparación do ADN.[65]

Estudos xenéticos

Aínda que Xenopus laevis é a especie máis comunmente utilizada en estudos de bioloxía do desenvolvemento, os estudos xenéticos, especialmente os estudos xenéticos avanzados, poden ser complicados polo seu xenoma pseudotetraploide. Xenopus tropicalis proporciona un modelo máis simple para estudos xenéticos, ao ter un xenoma diploide.

Técnicas de knockdown da expresión xenética

A expresión dos xenes pode ser reducida por diversos medios, por exemplo usando oligonucleótidos antisentido dirixidos a moléculas de ARNm específicas. Os oligonucleótidos de ADN complementarios de moléculas de ARNm específicas adoitan ser modificados quimicamente para mellorar a súa estabilidade in vivo. As modificacións químicas usadas para este propósito inclúen o uso de fosforotioato, 2'-O-metil, morfolino, MEA fosforamidato e DEED fosforamidato.[66]

Oligonucleótidos morfolino

Artigo principal: Morfolino.

Os oligos morfolino (ou Morpholino) utilízanse tanto en X. laevis coma en X. tropicalis para probar a función dunha proteína observando os resultados de eliminar a actividade da proteína.[66][67] Por exemplo, cribouse desta forma un conxunto de xenes de X. tropicalis.[68]

Os oligos morfolino (MOs) son oligos curtos antisentido feitos de nucleótidos modificados. Os MOs poden realizar un knockdown da expresión xénica ao inhibiren a tradución do ARNm, bloqueando o empalme de ARN, ou inhibindo a actividade e maduración dos miARN. Os MOs demostraron ser efectivos como ferramentas para o knockdown en experimentos de bioloxía do desenvolvemento e reactivos que bloquean o ARN para o cultivo de células. Os MOs non degradan os seus ARN diana, pero en vez diso actúan vía un mecanismo de bloqueo estérico de maneira independente de RNAseH. Permanecen estables en células e non inducen respostas inmunes. A microinxección de MOs en embrións temperáns de Xenopus poden suprimir a expresión xénica de maneira dirixida.

Como en todas as estratexias antisentido, diferentes MOs poden ter diferente eficacia, e poden causar efectos non específicos fóra da diana. A miúdo, varios MOs necesitan ser probados para encontrar unha secuencia diana efectiva. Utilízanse controis rigorosos para demostrar a especificidade,[67] como os seguintes:

  • Fenocopia de mutación xenética.
  • Verificación de proteínas reducidas por western blot ou inmunotinguidura.
  • Rescate de ARNm engadindo de novo un ARNm inmune ao oligo morfolino.
  • Uso de dous oligos morfolino diferentes (bloqueo da tradución e do empalme).
  • Inxección de oligos morfolino de control.

Xenbase proprociona un catálogo no que se poden buscar uns 2000 MOs que foron usados especificamente en investigación con Xenopus. Pódese buscar nos datos por secuencia, símbolo do xene e varios sinónimos (como se utilizan en diferentes publicacións).[69] Xenbase mapea os MOs dos últimos xenomas de Xenopus obtidos en GBrowse, predín os impactos 'fóra de diana', e teñen unha listaxe de toda a literatura de Xenopus na cal se publicou o morfolino.

Notas

  1. 1,0 1,1 1,2 1,3 Wallingford, J., Liu, K., and Zheng, Y. 2010. Current Biology v. 20, p. R263-4
  2. 2,0 2,1 2,2 Harland, R.M. and Grainger, R.M. 2011. Trends in Genetics v. 27, p 507-15
  3. 3,0 3,1 3,2 "IACUC Learning Module — Xenopus laevis". University of Arizona. Arquivado dende o orixinal o 26 de xuño de 2010. Consultado o 2009-10-11.
  4. 4,0 4,1 Roots, Clive. Nocturnal animals. Greenwood Press. p. 19. ISBN 0-313-33546-X.
  5. 5,0 5,1 5,2 5,3 5,4 Passmore, N. I. & Carruthers, V. C. (1979). South African Frogs, p.42-43. Witwatersrand University Press, Johannesburg. ISBN 0-85494-525-3.
  6. Tobias, Martha; Corke, A; Korsh, J; Yin, D; Kelley, DB (2010). "Vocal competition in male Xenopus laevis frogs". Behavioral Ecology and Sociobiology 64: 1791–1803. PMC 3064475. PMID 21442049. doi:10.1007/s00265-010-0991-3.
  7. Tobias, ML; Viswanathan, SS; Kelley, DB (1998). "Rapping, a female receptive call, initiates male-female duets in the South African clawed frog". Proc Natl Acad Sci USA 95: 1870–1875. PMC 19205. doi:10.1073/pnas.95.4.1870.
  8. Harland, RM; Grainger, RM (2011). "Xenopus research: metamorphosed by genetics and genomics". Trends Genet. 27 (12): 507–15. PMC 3601910. PMID 21963197. doi:10.1016/j.tig.2011.08.003.
  9. Session, AM; Uno, Y; Kwon, T; Chapman, JA; Toyoda, A; Takahashi, S; Fukui, A; Hikosaka, A; Suzuki, A; Kondo, M; van Heeringen, SJ; Quigley, I; Heinz, S; Ogino, H; Ochi, H; Hellsten, U; Lyons, JB; Simakov, O; Putnam, N; Stites, J; Kuroki, Y; Tanaka, T; Michiue, T; Watanabe, M; Bogdanovic, O; Lister, R; Georgiou, G; Paranjpe, SS; van Kruijsbergen, I; Shu, S; Carlson, J; Kinoshita, T; Ohta, Y; Mawaribuchi, S; Jenkins, J; Grimwood, J; Schmutz, J; Mitros, T; Mozaffari, SV; Suzuki, Y; Haramoto, Y; Yamamoto, TS; Takagi, C; Heald, R; Miller, K; Haudenschild, C; Kitzman, J; Nakayama, T; Izutsu, Y; Robert, J; Fortriede, J; Burns, K; Lotay, V; Karimi, K; Yasuoka, Y; Dichmann, DS; Flajnik, MF; Houston, DW; Shendure, J; DuPasquier, L; Vize, PD; Zorn, AM; Ito, M; Marcotte, EM; Wallingford, JB; Ito, Y; Asashima, M; Ueno, N; Matsuda, Y; Veenstra, GJ; Fujiyama, A; Harland, RM; Taira, M; Rokhsar, DS (20 October 2016). "Genome evolution in the allotetraploid frog Xenopus laevis.". Nature 538 (7625): 336–343. PMID 27762356. doi:10.1038/nature19840.
  10. Schmid, M; Evans, BJ; Bogart, JP (2015). "Polyploidy in Amphibia". Cytogenet. Genome Res. 145 (3–4): 315–30. PMID 26112701. doi:10.1159/000431388.
  11. Karimi K, Fortriede JD, Lotay VS, Burns KA, Wang DZ, Fisher ME, Pells TJ, James-Zorn C, Wang Y, Ponferrada VG, Chu S, Chaturvedi P, Zorn AM, Vize PD (2018). "Xenbase: a genomic, epigenomic and transcriptomic model organism database". Nucleic Acids Research 46 (D1): D861–D868. PMC 5753396. PMID 29059324. doi:10.1093/nar/gkx936.
  12. "Xenopus model organism database". Xenbase.org.
  13. Hardwick, Laura J. A.; Philpott, Anna (2015-12-15). "An oncologist׳s friend: How Xenopus contributes to cancer research". Developmental Biology. Modeling Human Development and Disease in Xenopus 408 (2): 180–187. doi:10.1016/j.ydbio.2015.02.003.
  14. Gurdon, J. B.; Lane, C. D.; Woodland, H. R.; Marbaix, G. (17 September 1971). "Use of Frog Eggs and Oocytes for the Study of Messenger RNA and its Translation in Living Cells". Nature 233 (5316): 177–182. PMID 4939175. doi:10.1038/233177a0.
  15. Reynolds, F. H.; Premkumar, E.; Pitha, P. M. (1 December 1975). "Interferon activity produced by translation of human interferon messenger RNA in cell-free ribosomal systems and in Xenopus oocytes.". Proceedings of the National Academy of Sciences 72 (12): 4881–4885. PMC 388836. doi:10.1073/pnas.72.12.4881.
  16. Heasman, J; Kofron, M; Wylie, C (Jun 1, 2000). "Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach.". Developmental Biology 222 (1): 124–34. PMID 10885751. doi:10.1006/dbio.2000.9720.
  17. Schäfer, Tobias; Pütz, Michael; Lienkamp, Soeren; Ganner, Athina; Bergbreiter, Astrid; Ramachandran, Haribaskar; Gieloff, Verena; Gerner, Martin; Mattonet, Christian (2008-12-01). "Genetic and physical interaction between the NPHP5 and NPHP6 gene products". Human Molecular Genetics 17 (23): 3655–3662. ISSN 1460-2083. PMC 2802281. PMID 18723859. doi:10.1093/hmg/ddn260.
  18. Reversade, Bruno; Escande-Beillard, Nathalie; Dimopoulou, Aikaterini; Fischer, Björn; Chng, Serene C.; Li, Yun; Shboul, Mohammad; Tham, Puay-Yoke; Kayserili, Hülya (2009-09-01). "Mutations in PYCR1 cause cutis laxa with progeroid features". Nature Genetics 41 (9): 1016–1021. ISSN 1546-1718. PMID 19648921. doi:10.1038/ng.413.
  19. Pittman, Alan M.; Naranjo, Silvia; Webb, Emily; Broderick, Peter; Lips, Esther H.; van Wezel, Tom; Morreau, Hans; Sullivan, Kate; Fielding, Sarah (2009-06-01). "The colorectal cancer risk at 18q21 is caused by a novel variant altering SMAD7 expression". Genome Research 19 (6): 987–993. ISSN 1088-9051. PMC 2694486. PMID 19395656. doi:10.1101/gr.092668.109.
  20. Joukov, V; Groen, AC; Prokhorova, T; Gerson, R; White, E; Rodriguez, A; Walter, JC; Livingston, DM (Nov 3, 2006). "The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly.". Cell 127 (3): 539–52. PMID 17081976. doi:10.1016/j.cell.2006.08.053.
  21. You, Z; Bailis, JM; Johnson, SA; Dilworth, SM; Hunter, T (Nov 2007). "Rapid activation of ATM on DNA flanking double-strand breaks.". Nature Cell Biology 9 (11): 1311–8. PMID 17952060. doi:10.1038/ncb1651.
  22. Ben-Yehoyada, M; Wang, LC; Kozekov, ID; Rizzo, CJ; Gottesman, ME; Gautier, J (Sep 11, 2009). "Checkpoint signaling from a single DNA interstrand crosslink.". Molecular Cell 35 (5): 704–15. PMC 2756577. PMID 19748363. doi:10.1016/j.molcel.2009.08.014.
  23. Sobeck, Alexandra; Stone, Stacie; Landais, Igor; de Graaf, Bendert; Hoatlin, Maureen E. (2009-09-18). "The Fanconi Anemia Protein FANCM Is Controlled by FANCD2 and the ATR/ATM Pathways". The Journal of Biological Chemistry 284 (38): 25560–25568. ISSN 0021-9258. PMC 2757957. PMID 19633289. doi:10.1074/jbc.M109.007690.
  24. Dominguez-Sola, D; Ying, CY; Grandori, C; Ruggiero, L; Chen, B; Li, M; Galloway, DA; Gu, W; Gautier, J; Dalla-Favera, R (Jul 26, 2007). "Non-transcriptional control of DNA replication by c-Myc.". Nature 448 (7152): 445–51. PMID 17597761. doi:10.1038/nature05953.
  25. Dean, S; Marchetti, R; Kirk, K; Matthews, KR (May 14, 2009). "A surface transporter family conveys the trypanosome differentiation signal.". Nature 459 (7244): 213–7. PMC 2685892. PMID 19444208. doi:10.1038/nature07997.
  26. Bockenhauer, Detlef; Feather, Sally; Stanescu, Horia C.; Bandulik, Sascha; Zdebik, Anselm A.; Reichold, Markus; Tobin, Jonathan; Lieberer, Evelyn; Sterner, Christina (2009-05-07). "Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations". The New England Journal of Medicine 360 (19): 1960–1970. ISSN 1533-4406. PMC 3398803. PMID 19420365. doi:10.1056/NEJMoa0810276.
  27. Gustina, AS; Trudeau, MC (Aug 4, 2009). "A recombinant N-terminal domain fully restores deactivation gating in N-truncated and long QT syndrome mutant hERG potassium channels.". Proceedings of the National Academy of Sciences of the United States of America 106 (31): 13082–7. PMC 2722319. PMID 19651618. doi:10.1073/pnas.0900180106.
  28. Duarri, Anna; Teijido, Oscar; López-Hernández, Tania; Scheper, Gert C.; Barriere, Herve; Boor, Ilja; Aguado, Fernando; Zorzano, Antonio; Palacín, Manuel (2008-12-01). "Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects". Human Molecular Genetics 17 (23): 3728–3739. ISSN 1460-2083. PMC 2581428. PMID 18757878. doi:10.1093/hmg/ddn269.
  29. Blitz, Ira L.; Biesinger, Jacob; Xie, Xiaohui; Cho, Ken W.Y. (2013-12-01). "Biallelic genome modification in F0Xenopus tropicalis embryos using the CRISPR/Cas system". genesis (en inglés) 51 (12): 827–834. ISSN 1526-968X. PMC 4039559. PMID 24123579. doi:10.1002/dvg.22719.
  30. Nakayama, Takuya; Fish, Margaret B.; Fisher, Marilyn; Oomen-Hajagos, Jamina; Thomsen, Gerald H.; Grainger, Robert M. (2013-12-01). "Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis". genesis (en inglés) 51 (12): 835–843. ISSN 1526-968X. PMC 3947545. PMID 24123613. doi:10.1002/dvg.22720.
  31. Wang, Fengqin; Shi, Zhaoying; Cui, Yan; Guo, Xiaogang; Shi, Yun-Bo; Chen, Yonglong (2015-04-14). "Targeted gene disruption in Xenopus laevis using CRISPR/Cas9". Cell & Bioscience (en inglés) 5 (1). PMC 4403895. PMID 25897376. doi:10.1186/s13578-015-0006-1.
  32. Bhattacharya, Dipankan; Marfo, Chris A.; Li, Davis; Lane, Maura; Khokha, Mustafa K. (2015-12-15). "CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus". Developmental Biology. Modeling Human Development and Disease in Xenopus 408 (2): 196–204. PMC 4684459. PMID 26546975. doi:10.1016/j.ydbio.2015.11.003.
  33. Dupont, Sirio; Mamidi, Anant; Cordenonsi, Michelangelo; Montagner, Marco; Zacchigna, Luca; Adorno, Maddalena; Martello, Graziano; Stinchfield, Michael J.; Soligo, Sandra (2009-01-09). "FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination". Cell 136 (1): 123–135. ISSN 1097-4172. PMID 19135894. doi:10.1016/j.cell.2008.10.051.
  34. Cordenonsi, Michelangelo; Montagner, Marco; Adorno, Maddalena; Zacchigna, Luca; Martello, Graziano; Mamidi, Anant; Soligo, Sandra; Dupont, Sirio; Piccolo, Stefano (2007-02-09). "Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation". Science 315 (5813): 840–843. ISSN 1095-9203. PMID 17234915. doi:10.1126/science.1135961.
  35. Fuentealba, Luis C.; Eivers, Edward; Ikeda, Atsushi; Hurtado, Cecilia; Kuroda, Hiroki; Pera, Edgar M.; De Robertis, Edward M. (2007-11-30). "Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal". Cell 131 (5): 980–993. ISSN 0092-8674. PMC 2200633. PMID 18045539. doi:10.1016/j.cell.2007.09.027.
  36. Kim, Nam-Gyun; Xu, Chong; Gumbiner, Barry M. (2009-03-31). "Identification of targets of the Wnt pathway destruction complex in addition to beta-catenin". Proceedings of the National Academy of Sciences of the United States of America 106 (13): 5165–5170. ISSN 1091-6490. PMC 2663984. PMID 19289839. doi:10.1073/pnas.0810185106.
  37. Kaláb, Petr; Pralle, Arnd; Isacoff, Ehud Y.; Heald, Rebecca; Weis, Karsten (2006-03-30). "Analysis of a RanGTP-regulated gradient in mitotic somatic cells". Nature 440 (7084): 697–701. ISSN 1476-4687. PMID 16572176. doi:10.1038/nature04589.
  38. Tsai, Ming-Ying; Wang, Shusheng; Heidinger, Jill M.; Shumaker, Dale K.; Adam, Stephen A.; Goldman, Robert D.; Zheng, Yixian (2006-03-31). "A mitotic lamin B matrix induced by RanGTP required for spindle assembly". Science 311 (5769): 1887–1893. ISSN 1095-9203. PMID 16543417. doi:10.1126/science.1122771.
  39. Ma, Li; Tsai, Ming-Ying; Wang, Shusheng; Lu, Bingwen; Chen, Rong; Iii, John R. Yates; Zhu, Xueliang; Zheng, Yixian (2009-03-01). "Requirement for Nudel and dynein for assembly of the lamin B spindle matrix". Nature Cell Biology 11 (3): 247–256. ISSN 1476-4679. PMC 2699591. PMID 19198602. doi:10.1038/ncb1832.
  40. Emanuele, Michael J.; Stukenberg, P. Todd (2007-09-07). "Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment". Cell 130 (5): 893–905. ISSN 0092-8674. PMID 17803911. doi:10.1016/j.cell.2007.07.023.
  41. Akkers, Robert C.; van Heeringen, Simon J.; Jacobi, Ulrike G.; Janssen-Megens, Eva M.; Françoijs, Kees-Jan; Stunnenberg, Hendrik G.; Veenstra, Gert Jan C. (2009-09-01). "A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos". Developmental Cell 17 (3): 425–434. ISSN 1878-1551. PMC 2746918. PMID 19758566. doi:10.1016/j.devcel.2009.08.005.
  42. Hontelez, Saartje; van Kruijsbergen, Ila; Georgiou, Georgios; van Heeringen, Simon J.; Bogdanovic, Ozren; Lister, Ryan; Veenstra, Gert Jan C. (2015-01-01). "Embryonic transcription is controlled by maternally defined chromatin state". Nature Communications 6: 10148. ISSN 2041-1723. PMC 4703837. PMID 26679111. doi:10.1038/ncomms10148.
  43. Walker, James C.; Harland, Richard M. (2009-05-01). "microRNA-24a is required to repress apoptosis in the developing neural retina". Genes & Development 23 (9): 1046–1051. ISSN 1549-5477. PMC 2682950. PMID 19372388. doi:10.1101/gad.1777709.
  44. Rosa, Alessandro; Spagnoli, Francesca M.; Brivanlou, Ali H. (2009-04-01). "The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection". Developmental Cell 16 (4): 517–527. ISSN 1878-1551. PMID 19386261. doi:10.1016/j.devcel.2009.02.007.
  45. Park, Jae-Il; Venteicher, Andrew S.; Hong, Ji Yeon; Choi, Jinkuk; Jun, Sohee; Shkreli, Marina; Chang, Woody; Meng, Zhaojing; Cheung, Peggie (2009-07-02). "Telomerase modulates Wnt signalling by association with target gene chromatin". Nature 460 (7251): 66–72. ISSN 1476-4687. PMC 4349391. PMID 19571879. doi:10.1038/nature08137.
  46. De Val, Sarah; Chi, Neil C.; Meadows, Stryder M.; Minovitsky, Simon; Anderson, Joshua P.; Harris, Ian S.; Ehlers, Melissa L.; Agarwal, Pooja; Visel, Axel (2008-12-12). "Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors". Cell 135 (6): 1053–1064. ISSN 1097-4172. PMC 2782666. PMID 19070576. doi:10.1016/j.cell.2008.10.049.
  47. Li, Yan; Rankin, Scott A.; Sinner, Débora; Kenny, Alan P.; Krieg, Paul A.; Zorn, Aaron M. (2008-11-01). "Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling". Genes & Development 22 (21): 3050–3063. ISSN 0890-9369. PMC 2577796. PMID 18981481. doi:10.1101/gad.1687308.
  48. Carmona-Fontaine, Carlos; Matthews, Helen K.; Kuriyama, Sei; Moreno, Mauricio; Dunn, Graham A.; Parsons, Maddy; Stern, Claudio D.; Mayor, Roberto (2008-12-18). "Contact inhibition of locomotion in vivo controls neural crest directional migration". Nature 456 (7224): 957–961. ISSN 1476-4687. PMC 2635562. PMID 19078960. doi:10.1038/nature07441.
  49. Buitrago-Delgado, Elsy; Nordin, Kara; Rao, Anjali; Geary, Lauren; LaBonne, Carole (2015-06-19). "NEURODEVELOPMENT. Shared regulatory programs suggest retention of blastula-stage potential in neural crest cells". Science 348 (6241): 1332–1335. ISSN 1095-9203. PMC 4652794. PMID 25931449. doi:10.1126/science.aaa3655.
  50. Tsuji, Toshiya; Lau, Eric; Chiang, Gary G.; Jiang, Wei (2008-12-26). "The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control". Molecular Cell 32 (6): 862–869. ISSN 1097-4164. PMC 4556649. PMID 19111665. doi:10.1016/j.molcel.2008.12.005.
  51. Xu, Xiaohua; Rochette, Patrick J.; Feyissa, Eminet A.; Su, Tina V.; Liu, Yilun (2009-10-07). "MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication". The EMBO Journal 28 (19): 3005–3014. ISSN 1460-2075. PMC 2760112. PMID 19696745. doi:10.1038/emboj.2009.235.
  52. Ben-Yehoyada, Merav; Wang, Lily C.; Kozekov, Ivan D.; Rizzo, Carmelo J.; Gottesman, Max E.; Gautier, Jean (2009-09-11). "Checkpoint signaling from a single DNA interstrand crosslink". Molecular Cell 35 (5): 704–715. ISSN 1097-4164. PMC 2756577. PMID 19748363. doi:10.1016/j.molcel.2009.08.014.
  53. Räschle, Markus; Knipscheer, Puck; Knipsheer, Puck; Enoiu, Milica; Angelov, Todor; Sun, Jingchuan; Griffith, Jack D.; Ellenberger, Tom E.; Schärer, Orlando D. (2008-09-19). "Mechanism of replication-coupled DNA interstrand crosslink repair". Cell 134 (6): 969–980. ISSN 1097-4172. PMC 2748255. PMID 18805090. doi:10.1016/j.cell.2008.08.030.
  54. MacDougall, Christina A.; Byun, Tony S.; Van, Christopher; Yee, Muh-ching; Cimprich, Karlene A. (2007-04-15). "The structural determinants of checkpoint activation". Genes & Development 21 (8): 898–903. ISSN 0890-9369. PMC 1847708. PMID 17437996. doi:10.1101/gad.1522607.
  55. Nutt, Leta K.; Buchakjian, Marisa R.; Gan, Eugene; Darbandi, Rashid; Yoon, Sook-Young; Wu, Judy Q.; Miyamoto, Yuko J.; Gibbons, Jennifer A.; Gibbon, Jennifer A. (2009-06-01). "Metabolic control of oocyte apoptosis mediated by 14-3-3zeta-regulated dephosphorylation of caspase-2". Developmental Cell 16 (6): 856–866. ISSN 1878-1551. PMC 2698816. PMID 19531356. doi:10.1016/j.devcel.2009.04.005.
  56. Viczian, Andrea S.; Solessio, Eduardo C.; Lyou, Yung; Zuber, Michael E. (2009-08-01). "Generation of functional eyes from pluripotent cells". PLOS Biology 7 (8): e1000174. ISSN 1545-7885. PMC 2716519. PMID 19688031. doi:10.1371/journal.pbio.1000174.
  57. Dzamba, Bette J.; Jakab, Karoly R.; Marsden, Mungo; Schwartz, Martin A.; DeSimone, Douglas W. (2009-03-01). "Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization". Developmental Cell 16 (3): 421–432. ISSN 1878-1551. PMC 2682918. PMID 19289087. doi:10.1016/j.devcel.2009.01.008.
  58. Park, Tae Joo; Mitchell, Brian J.; Abitua, Philip B.; Kintner, Chris; Wallingford, John B. (2008-07-01). "Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells". Nature Genetics 40 (7): 871–879. ISSN 1546-1718. PMC 2771675. PMID 18552847. doi:10.1038/ng.104.
  59. Mitchell, Brian; Jacobs, Richard; Li, Julie; Chien, Shu; Kintner, Chris (2007-05-03). "A positive feedback mechanism governs the polarity and motion of motile cilia". Nature 447 (7140): 97–101. ISSN 1476-4687. PMID 17450123. doi:10.1038/nature05771.
  60. Kälin, Roland E.; Bänziger-Tobler, Nadja E.; Detmar, Michael; Brändli, André W. (2009-07-30). "An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis". Blood 114 (5): 1110–1122. ISSN 1528-0020. PMC 2721788. PMID 19478043. doi:10.1182/blood-2009-03-211771.
  61. Ny, Annelii; Koch, Marta; Vandevelde, Wouter; Schneider, Martin; Fischer, Christian; Diez-Juan, Antonio; Neven, Elke; Geudens, Ilse; Maity, Sunit (2008-09-01). "Role of VEGF-D and VEGFR-3 in developmental lymphangiogenesis, a chemicogenetic study in Xenopus tadpoles" (PDF). Blood 112 (5): 1740–1749. ISSN 1528-0020. PMID 18474726. doi:10.1182/blood-2007-08-106302. Arquivado dende o orixinal (PDF) o 24-09-2019. Consultado o 08-06-2018.
  62. Cha, Hye Ji; Byrom, Michelle; Mead, Paul E.; Ellington, Andrew D.; Wallingford, John B.; Marcotte, Edward M. (2012-01-01). "Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent". PLOS Biology 10 (8): e1001379. ISSN 1545-7885. PMC 3423972. PMID 22927795. doi:10.1371/journal.pbio.1001379.
  63. "Gene Tests in Yeast Aid Work on Cancer".
  64. Fini, Jean-Baptiste; Le Mevel, Sebastien; Turque, Nathalie; Palmier, Karima; Zalko, Daniel; Cravedi, Jean-Pierre; Demeneix, Barbara A. (2007-08-15). "An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption". Environmental Science & Technology 41 (16): 5908–5914. ISSN 0013-936X. PMID 17874805. doi:10.1021/es0704129.
  65. Nat Chem Biol. 2008. 4, 119-25; Int. J. Cancer. 2009. 124, 783-92
  66. 66,0 66,1 Dagle, J. M.; Weeks, D. L. (2001-12-01). "Oligonucleotide-based strategies to reduce gene expression". Differentiation; Research in Biological Diversity 69 (2–3): 75–82. ISSN 0301-4681. PMID 11798068. doi:10.1046/j.1432-0436.2001.690201.x.
  67. 67,0 67,1 Blum, Martin; De Robertis, Edward M.; Wallingford, John B.; Niehrs, Christof (2015-10-26). "Morpholinos: Antisense and Sensibility". Developmental Cell 35 (2): 145–149. ISSN 1878-1551. PMID 26506304. doi:10.1016/j.devcel.2015.09.017.
  68. Rana AA, Collart C, Gilchrist MJ, Smith JC (November 2006). "Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides". PLoS Genet. 2 (11): e193. PMC 1636699. PMID 17112317. doi:10.1371/journal.pgen.0020193.
    "A Xenopus tropicalis antisense morpholino screen". Gurdon Institute.
  69. Xenbase

Véxase tamén

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia gl Galician

Xenopus: Brief Summary ( Galician )

provided by wikipedia gl Galician

Xenopus (do grego ξενος, xenos, 'estraño', πους, pous, 'pé') é un xénero de ras de vida moi acuática nativas da África subsahariana. Describíronse polo momento 20 especies dentro deste xénero. As dúas especies mellor coñecidas son Xenopus laevis e Xenopus tropicalis, que son frecuentemente estudados como organismos modelo para a bioloxía do desenvolvemento, bioloxía celular, toxicoloxía, neurociencia e como modelo de doenzas humanas e defectos conxénitos.

O xénero é tamén coñecido pola súa poliploidía, e algunhas especies teñen 12 xogos de cromosomas.

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia gl Galician

Xenopus ( Indonesian )

provided by wikipedia ID

Xenopus adalah katak yang berasal dari Sahara, Afrika.[1] Xenopus dikenal sebagai katak pencakar dari Afrika atau Platanna, karena memiliki kaki berbentuk cakar yang digunakan untuk merobek makanannya.[1] Xenopus berbentuk bulat, seperti telur dan memiliki kulit yang sangat licin.[2] Pada umumnya, xenopus ditemukan dalam air dengan warna hijau keabu-abuan, serta selalu berganti kulit pada setiap musim.[2] Xenopus mempunyai waktu hidup sekitar 5-15 tahun.[2] Xenopus jantan dan betina dapat di bedakan berdasarkan bentuk.[2] Bentuk xenopus jantan biasanya sekitar 20% lebih kecil dari xenopus betina, dengan tubuh dan kaki agak langsing.[2] Xenopus betina lebih gemuk dengan tonjolan di atas belakang kaki, karena tonjolan itu merupakan tempat telur.[2] Jenis xenopus yang terkenal adalah xenopus laevis dan xenopus tropicalis.[2] Kedua jenis xenopus ini digunakan dalam laboratorium sebagai subyek penelitian.[2]

Referensi

  1. ^ a b (Inggris) Keith Hall, Brian. (1999). Evolutionary Developmental Biology. South America. Kluwer Academic. ISBN 0-412-78590-0, 9780412785900. Page 124.
  2. ^ a b c d e f g h (Inggris) African Clawed Frog, xenopuswiki.wetpaint.com. Diakses pada 9 Juni 2010.

Pranala luar

Blue morpho butterfly.jpg Artikel bertopik biologi ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.
license
cc-by-sa-3.0
copyright
Penulis dan editor Wikipedia
original
visit source
partner site
wikipedia ID

Xenopus: Brief Summary ( Indonesian )

provided by wikipedia ID

Xenopus adalah katak yang berasal dari Sahara, Afrika. Xenopus dikenal sebagai katak pencakar dari Afrika atau Platanna, karena memiliki kaki berbentuk cakar yang digunakan untuk merobek makanannya. Xenopus berbentuk bulat, seperti telur dan memiliki kulit yang sangat licin. Pada umumnya, xenopus ditemukan dalam air dengan warna hijau keabu-abuan, serta selalu berganti kulit pada setiap musim. Xenopus mempunyai waktu hidup sekitar 5-15 tahun. Xenopus jantan dan betina dapat di bedakan berdasarkan bentuk. Bentuk xenopus jantan biasanya sekitar 20% lebih kecil dari xenopus betina, dengan tubuh dan kaki agak langsing. Xenopus betina lebih gemuk dengan tonjolan di atas belakang kaki, karena tonjolan itu merupakan tempat telur. Jenis xenopus yang terkenal adalah xenopus laevis dan xenopus tropicalis. Kedua jenis xenopus ini digunakan dalam laboratorium sebagai subyek penelitian.

license
cc-by-sa-3.0
copyright
Penulis dan editor Wikipedia
original
visit source
partner site
wikipedia ID

Xenopus ( Italian )

provided by wikipedia IT

Xenopus Wagler, 1827 è un genere di anfibi anuri della famiglia dei Pipidae.

Tassonomia

Questo genere comprende 29 specie[1]:

Distribuzione

Sono diffusi principalmente nelle regioni tropicali dell'Africa. Alcune specie, come Xenopus laevis, a causa del grande utilizzo come animali da laboratorio e da acquario, si sono diffuse in alcuni stati degli Stati Uniti meridionali, in Cile, in Galles, in Francia e, recentemente, in Italia (Sicilia)[3].

Note

  1. ^ (EN) Frost D.R. et al., Xenopus, in Amphibian Species of the World: an Online Reference. Version 6.0, New York, American Museum of Natural History, 2014. URL consultato il 4 agosto 2017.
  2. ^ a b Synonym: Silurana Gray, 1864, su research.amnh.org. URL consultato il 30 maggio 2013.
  3. ^ Lillo F., Faraone F.P & Lo Valvo M., Xenopus laevis in Sicilia: areale, invasività e impatto (PDF), in Le specie alloctone in Italia: censimenti, invasività e piani di azione, Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 2008.

 title=
license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Xenopus: Brief Summary ( Italian )

provided by wikipedia IT

Xenopus Wagler, 1827 è un genere di anfibi anuri della famiglia dei Pipidae.

license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Xenopus ( Portuguese )

provided by wikipedia PT

Xenopus (do latim, pé estranho) é um género de rãs estritamente aquáticas nativas da África subsariana. Há dezoito espécies no género Xenopus. A espécie mais conhecida do género é Xenopus laevis, estudada como organismo modelo.

Morfologia

Todas as espécies de Xenopus têm corpos achatados e aerodinâmicos aproximadamente em forma oval, assim como pele muito escorregadia (devido a uma camada de muco protector[1]). A pele da rã é lisa tendo contudo uma linha lateral com uma aparência de sutura. As rãs são nadadores excelentes e têm potentes dedos dos membros posteriores com membranas interdigitais completas apesar dos dedos dos membros anteriores não terem membranas. Três dos dedos dos pés têm garrass pretas conspícuas.

Os olhos da rã estão posicionados no topo da cabeça. As pupilas são circulares. Não têm pálpebras, línguas (esta está completamente ligada ao chão da boca[1]) ou tímpanos (de modo similar ao sapo Pipa pipa[2]) móveis.[3]

Internamente, são algo únicos dado que, ao contrário da maioria dos anfíbios, não têm haptoglobina no sangue.[3]

Comportamento

As espécies de Xenopus são inteiramente aquáticas, apesar de já terem sido observadas a migram em terra para corpos de água próximos durante períodos de seca. São normalmente encontrados em lagos, rios, pântanos e reservatórios artificiais.[3]

Rãs adultas são normalmente predadores e detritívoros e dado que a sua língua é inútil, as rãs usam os seus pequenos membros anteriores para ajudar na alimentação. Uma vez que não possuem saco vocal, produzem cliques debaixo de água (novamente de modo semelhante a Pipa pipa.[2] As espécies de Xenopus também são activas durante o crepúsculo).[3]

Durante a época de reprodução, os machos têm tubérculos nupciais pretos nos dedos para ajudar a agarrar a fêmea. O acasalamento é inguinal, o que significa que o macho agarra a fêmea pela cintura.[3]

Tal como outros anuros, são muitas vezes usados em laboratório para estudo.[1] Em hebraico o nome comum do género significa literalmente "Rã medicinal".[4]

Fecundação e Estabelecimento do eixo Dorso-Ventral em Xenopus

O ovo de Xenopus é circular e possui um polo animal e um polo vegetal, citoplasma cortical (pigmentado no polo animal e não pigmentado no polo vegetal) e citoplasma sub-cortical. A fecundação é externa e a entrada do espermatozóide no ovo ocorre sempre no polo animal, sendo a região de entrada do espermatozóide definida como ventral. Assim que a fecundação ocorre, o citoplasma cortical gira 30 graus na direção de entrada do espermatozóide, enquanto o citoplasma sub-cortical permanece imóvel, e portanto, com uma pequena região agora exposta e denominada grey crescent. A rotação cortical do citoplasma do ovo de Xenopus possui algumas funções biológicas, sendo elas: reorganização dos microtúbulos abaixo do citoplasma cortical, especificação do eixo dorso-central e exposição do citoplasma subcortical (área definida como grey crescent).

O ovo também possui proteínas e RNAs menssageiros herdados da mãe que são chamados determinantes maternos. Estes determinantes são assim chamados por serem herdados da mãe e por agirem no começo do desenvolvimento do embrião, enquanto este não tem seu genoma completamente ativado. Alguns destes determinantes maternos são encontrados através de todo o ovo em forma de proteínas, como GSK3 e β-catenina. Outros determinantes maternos são encontrados apenas no polo vegetal em forma de proteínas (Dsh, GBP, Wnt11) ou RNAs menssageiros (VegT, Vg1). Estes determinantes farão parte da via de sinalização Wnt ou TGFβ, sendo a primeira responsável pelo estabelecimento da região dorsal do organismo e a segunda pela especificação da mesoderme.

 src=
Blastula de xenopus

Via de sinalização Wnt: os determinantes maternos Dsh, GBP e Wnt11 estão localizados no citoplasma cortical do polo vegetal. Ao ocorrer a rotação cortical após a fecundação, estes determinantes também mudam de lugar, sendo encontrados agora 30 graus no sentido anti-horário do polo vegetal em relação à posição anterior. A expressão destes determinantes inibirá a ação de GSK3 na região dorsal do ovo. GSK3 inibe a ação da β-catenina, no entanto, como ele está inibido, a β-catenina está livre e consegue se deslocar para o núcleo das células da região dorsal do ovo. A presença de β-catenina na região dorsal do ovo induz a formação do Centro de Nieuwkoop, também chamado de organizador. O Centro de Nieuwkoop irá secretar a proteína Nodal que irá definir as células desta região como mesoderme dorsal. Ou seja, a rotação cortical especifica o eixo dorso-ventral ao tornar β-catenina disponível para agir como um fator de transcrição no núcleo, levando à ativação do Centro de Nieuwkoop que secreta a proteína Nodal e estabelece a identidade da mesoderme dorsal.

Via de sinalização TGFβ: na região ventral por sua vez, não há expressão de Dsh, GBP ou Wnt11, logo, GSK3 está livre e consegue inibir a β-catenina, levando à sua degradação. Vg1 e VegT são expressos na região ventral, induzindo baixos níveis da proteína Nodal, o que ela à especificação das células dessa região como mesoderme ventral.

[5] [6] [7]

Referências

  1. a b c «IACUC Learning Module - Xenopus laevis». University of Arizona. Consultado em 11 de outubro de 2009. Arquivado do original em 26 de junho de 2010
  2. a b Roots, Clive. Nocturnal animals. [S.l.]: Greenwood Press. 19 páginas. ISBN 031333546X
  3. a b c d e Passmore, N. I. & Carruthers, V. C. (1979). South African Frogs, p.42-43. Witwatersrand University Press, Johannesburg. ISBN 0854945253.
  4. «Xenopus» (em Hebrew). Jerusalem Biblical Zoo. Consultado em 12 de outubro de 2009 !CS1 manut: Língua não reconhecida (link)
  5. Larabell, C. A., Torres, M., Rowning, B. A., Yost, C., Miller, J. R., Wu, M., ... & Moon, R. T. (1997). Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in β-catenin that are modulated by the Wnt signaling pathway. The Journal of cell biology, 136(5), 1123-1136.
  6. Miller, J. R., Rowning, B. A., Larabell, C. A., Yang-Snyder, J. A., Bates, R. L., & Moon, R. T. (1999). Establishment of the Dorsal–Ventral Axis inXenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation. The Journal of cell biology, 146(2), 427-438.
  7. Tickle, C. (2011). Principles of development. Oxford university press.

Xenopus como modelo de investigação

Xenopus são sitemas-modelo populares para estudos de expressão génica ou proteica e de Knockdown de genes. Com 1 milímetro de diâmetro, os oócitos de Xenopus são células muito grandes que são fáceis de usar em culturas e experiência por cientistas. RNA de outros organismos podem ser injectados nestes grandes oócitos e a expressão resultante estudada por técnicas de biologia molecular ou através de experimentação electrofisiológica. Expressão génica pode ser reduzida ou modificada usando oligonucleotídeos antisense injectados nos oócitos de Xenopus (para efeitos em todo o corpo) ou embriões (para efeitos nas células descendentes da célula injectada).

 title=
license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Xenopus: Brief Summary ( Portuguese )

provided by wikipedia PT

Xenopus (do latim, pé estranho) é um género de rãs estritamente aquáticas nativas da África subsariana. Há dezoito espécies no género Xenopus. A espécie mais conhecida do género é Xenopus laevis, estudada como organismo modelo.

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT