Pied flycatchers have a massive range extending to about 10,000,000 square kilometers. Their population levels are also large, around 24,000,000 to 39,000,000 birds in Europe. Population trends haven't been carefully studied, but BirdLife International does not believe they are declining at a significant rate. Therefore, they are listed as "Least Concern" by the IUCN Red List.
US Migratory Bird Act: no special status
US Federal List: no special status
CITES: no special status
State of Michigan List: no special status
IUCN Red List of Threatened Species: least concern
Groups of pied flycatchers respond to predators by mobbing them. Whichever bird spots the intruder will send out a mobbing call to alert the other flycatchers. If the intrusion is serious enough, several pied flycatchers will group together and harass the predator until it leaves. While this is a good strategy for large groups with many possible recruits for the mob, it can be dangerous for birds in less dense living situations. Predators like martens (Martes) may learn the mobbing call and respond to it, coming to attack the nests of birds while they are busy attacking the original intruder.
Stoats (Mustela erminea), least weasels (Mustela nivalis), and martens (Martes) raid nests. Goshawks (Accipiter gentilis), Eurasian sparrowhawks (Accipiter nisus), and tawny owls (Strix aluco) prey on fledgling and adult pied flycatchers.
Mobbing is reciprocal. When a bird hears the mobbing call, it may choose to assist or not. Assisting in mobbing behavior is dangerous, so some birds choose not to help their neighbors. However, birds who do not help in mobbing are significantly less likely to be helped if their nests are threatened.
Known Predators:
Pied flycatchers are small passerines, weighing about 13 grams. They are darker dorsally and lighter ventrally, with white bars on the dorsal sides of their wings. They often hold their wing tips lower than their tails, which is normal for flycatchers. Females and immature males are light brown ventrally and dark brown dorsally. The plumage of males darkens as they age, until they reach a jet black color. Male plumage reflects ultraviolet light. During nesting, brooding females have an incubation patch which can be used to determine sex.
Male birds have white spots on their foreheads, just above their beaks. The size of these spots directly correlates with a male’s attractiveness to a female. The size also indicates the male’s immune competence, and larger patches are correlated with fewer trypanosome infections. Usually males are the only ones with white forehead patches, but in some populations females may have them as well. These populations are generally in the southern parts of their range, and the patch is a sign of ageing, rather than health.
Insectivores, like pied flycatchers, generally have intermediate basal metabolic rates when compared to similar birds eating different diets. Temperate species average higher basal metabolic rates (BMR) than tropical species, and flighted birds are higher than flightless ones. There are other factors influencing the BMRof a species, including plumage color. Pied flycatchers average about 0.84 kJ/h in BMR.
Average mass: 13 g.
Average length: 13 cm.
Average wingspan: 22 cm.
Average basal metabolic rate: 0.84 kJ/h cm3.O2/g/hr.
Other Physical Features: endothermic ; homoiothermic; bilateral symmetry
Sexual Dimorphism: sexes colored or patterned differently; male more colorful
Pied flycatchers can reproduce until they are 6 years old, few birds reproduce after that age. The oldest recorded bird was found in Finland, aged 10 years and 11 months old.
Range lifespan
Status: wild: 131 (high) months.
Pied flycatchers winter on the tropical coast of west Africa. In the breeding seasons pied flycatchers are found in forests, and forest composition varies by region. In central Europe, pied flycatchers prefer high altitude beech and spruce forests. They are also found at middle altitude levels, where beech and spruce mix with deciduous forest. Breeding in the middle altitude zone brings them in contact with collared flycatchers (Ficedula albicollis), which prefer low altitudes and deciduous trees. These sister species are normally separated by altitude, tree species preference, and foraging strategy; pied flycatchers prefer foraging near the ground, while collared flycatchers prefer the canopy. However, these two species still produce hybrids at a rate of 2.6% where they co-occur.
In Finland, pied flycatchers prefer large patches of dense, old-growth forest containing deciduous trees and Scots pine (Pinus sylvestris). Territories with deciduous trees proved better in this case, since they provided more food.
Habitat Regions: temperate ; tropical ; terrestrial
Terrestrial Biomes: forest ; mountains
Aquatic Biomes: coastal
Pied flycatchers breed all over Europe, extending into the subalpine regions. They arrive on their breeding grounds in May and migrate to the tropical west African coast, between the equator and 15 degrees north, for the winter.
Biogeographic Regions: palearctic (Native ); ethiopian (Native )
Pied flycatchers often catch their prey in the air. They are insectivorous and eat many types of invertebrates, including beetles, spiders, and caterpillars. They also eat flies, ants, bees, and wasps, moths and their larvae. Individuals in populations in polluted areas eat more larvae and fewer moths and spiders than in populations in less polluted areas.
Interestingly, pied flycatchers are not fooled by eyespots on butterfly wings. They will attack butterflies with and without eyespots at equal frequencies.
Animal Foods: insects; terrestrial non-insect arthropods
Primary Diet: carnivore (Insectivore , Eats non-insect arthropods)
Pied flycatchers are subject to a range of parasitic infections. The white patches on their foreheads and wings lack the protection of melanin, so those areas are more prone to breakage, bacterial infection, and lice infestations. Pied flycatchers carry infestations of mites and fleas.
Nestlings are parasitized by blow fly larvae (Protocaliphora azurea). Well-fed nestlings are more resistant to parasitism. Blood parasite infections increase in parents with large clutches. Haemoproteus balmorali affects males more, while Haemoproteus pallidus affects females. The increased infection rate is probably due to the birds spending their energy on feeding their young at a cost to their immune systems.
Pied flycatchers have a varying relationship with northern wood ants (Formica aquilonia). When they nest in trees containing these ants, their nests are at risk of predation from the ants. However, when there is another predator which may eat the nestlings, like Eurasian jays (Garrulus glandarius), pied flycatchers may choose to nest in trees with wood ants because they help to defend against jays.
Mutualist Species:
Commensal/Parasitic Species:
Pied flycatchers eat the larvae of moths and other pests, including Eugraphe subrosa, Syngrapha interrogationis, Cerastis rubricosa, and Polia hepatica, which feed on plants in the genus Vaccinium, such as bilberry, cowberry, cranberry, and blueberry. Pied flycatchers also eat many other insects and spiders.
Positive Impacts: controls pest population
There are no known adverse effects of pied flycatchers on humans.
Pied flycatchers can see in the ultraviolet spectrum and females use this ability to choose mates. Males also use ultraviolet reflection to visually inspect the eggs his mate has laid. Eggs that reflect in the ultraviolet spectrum receive more parental investment from male parents. Pied flycatchers also use song, plumage color, and egg color to send signals to each other.
Communication Channels: visual ; acoustic
Perception Channels: visual ; ultraviolet; tactile ; acoustic ; chemical ; magnetic
Both monogamy and polygyny occur in this species. When a male has two mates, he usually keeps two separate territories, but sometimes both females will coexist in one territory, sometimes even on the same nest. Single females lay 5 to 7 eggs, two females laying together can produce double the eggs. Despite having so many eggs, however, females that nest together only average 1.1 more offspring than monogamous females. In bigynous systems with two territories, the primary female fares better than the secondary female, who may have been tricked into mating with an already paired male. The male usually provides more for his primary mate than the secondary mate, and sometimes he abandons his secondary mate altogether.
Polygyny may also represent a cost to males. Polygynous males are more likely to have unhatched eggs. They are also more likely to be cheated on by one or both mates, causing them to expend energy raising chicks that aren’t theirs.
Secondary female mates may receive a benefit from mating with an already paired male in the form of good genes. This is consistent with the “sexy son” hypothesis and suggests that sons inherit their father’s attractiveness and get more mates, resulting in the same number of grandchildren as the primary female. There is no evidence of this "sexy son" hypothesis in pied flycatchers. Huk and Winkel (2006) found sons of polygynous males were more reproductively successful, but this was true only for sons of primary females, not secondary female mates.
Males use songs to attract females. Bright plumage and complex songs indicate better fitness, so they are preferred by females. Their plumage is even ultraviolet reflective to make it bright to the females’ eyes. One of the best and quickest ways to judge males in an area is to listen to their songs, since the best males arrived first and got the best territories.
Males arrive first in breeding areas and set up their territories. They nest in holes or in nest boxes. They must defend their locations from other males, so they stay near the nest hole. Since they can’t move far from the nest hole without risking the loss of their spot, females are the ones who peruse available males and choose mates. Females generally choose older males first, who are identified by their jet black and white plumage instead of the brown, grey, grayish brown, and light black plumage of younger males. Older males are most likely to become polygamous.
Mating System: monogamous ; polygynous
It appears pied flycatchers not only prefer to nest in boxes, but are more successful when they do. Females begin laying eggs one or two days earlier and lay more eggs when in nest boxes. Larger clutch size is probably due to greater space, since clutch size is correlated with the area of the bottom of the nest. They experience less predation, possibly because the entrance to the box is higher than the actual nest. In natural holes, the entrance may be closer to the nest, making contents easier to access. If given enough nest boxes, these birds will nest at densities up to 200 pairs per square kilometer. In natural nests with optimal settings, they will only nest at densities at a quarter of that level. Breeding success in nest boxes ranges from 72% to over 80%, whereas in natural nests success is usually 54%.
Pied flycatchers lay 6 to 7 eggs which are 17 mm long and 13 mm wide. Eggs weigh about 1.7 grams, about 5% of that is the mass of the shell. The female incubates for 13 to 15 days. Young are altricial at hatching, with a thin covering of down. They fledge 16 to 17 days later.
Breeding interval: Pied flycatchers mate once a year, beginning in May.
Breeding season: Pied flycatchers breed from May into July.
Range eggs per season: 6 to 7.
Range time to hatching: 13 to 15 days.
Range fledging age: 16 to 17 days.
Average age at sexual or reproductive maturity (female): 1 years.
Average age at sexual or reproductive maturity (male): 1 years.
Key Reproductive Features: iteroparous ; seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; oviparous
Some females will lay their eggs in another female’s nest. Intraspecific nest parasitism is rare for pied flycatchers, and females guard their nests vigorously to avoid having to raise a chick that is not their own. Females are most aggressive toward each other in the nest building and egg laying phases of their reproductive cycles.
Some females reduce their clutch sizes by removing an egg. They place the egg on the rim of the nest, where it cools until the embryo is dead. Ejections most commonly occur after a particularly cold day. Females who eject eggs are more likely to overlap reproduction and moulting, two processes which require a lot of energy and are usually performed separately. Combining reproduction and moulting may indicate the female in question simply isn’t interested in reproduction as much as non-ejecting females. Other females who eject their eggs are either old (over four years) or have poor immune systems, both of which are physiological factors which make females less-than-ideal mothers.
Brood size affects parental investment by determining how much food parents need to supply. Parents often can’t supply enough when they have too many young. Parents with large clutches make more visits to the nest, but they make fewer visits per nestling than parents with smaller clutches. They don’t bring more food per visit, so each nestling gets less to eat than nestlings in smaller clutches. When presented with too little food, nestlings invest their nutrients in growing muscle and bone, because deficits in these areas are hard to make up later, and they will neglect proper gut development, which can be made up later. Neglecting gut development results in a shorter gut and less absorption abilities, which worsens their undernourishment.
The eggs are blue-green, a color caused by biliverdin, a pigment and an anti-oxidant. The more biliverdin is present in the egg shell, the brighter the egg and the more maternal antibodies it contains. This is important because the better the hatchling's immune system is, the more likely it will grow up healthy and able to reproduce. Laying bright eggs is the female’s way of signaling to her mate that she is healthy and producing good eggs. Deeply colored eggs have young with better immune systems. Eggshells with high levels of immunoglobins even move into the ultraviolet spectrum. Males visit the nest and assess the color of eggs. Males spend more time provisioning young hatched from eggs with good coloring. Male contributions relieve some of the burden on females, allowing her to recover and regain her health after incubation.
Sanz (2001) performed an experiment in which he reduced the size of the white patch on mated males. He found males with smaller white patches (therefore, less attractive males) spent more energy bringing food to their young. The young grew larger than those of unaltered fathers, which shows a clear benefit from the extra provisioning. Females did not change their feeding habits regardless of the males’ attractiveness or effort. The extra effort could be caused by the male being aware he is less attractive and therefore less able to successfully solicit extra-pair copulations, so he invests his time more in parenting.
Parental Investment: altricial ; pre-fertilization (Provisioning, Protecting: Female); pre-hatching/birth (Provisioning: Female, Protecting: Male, Female); pre-weaning/fledging (Provisioning: Male, Female, Protecting: Male, Female); pre-independence (Provisioning: Male, Female, Protecting: Male)
Regular passage visitor.
The European pied flycatcher (Ficedula hypoleuca) is a small passerine bird in the Old World flycatcher family. One of the four species of Western Palearctic black-and-white flycatchers, it hybridizes to a limited extent with the collared flycatcher.[2] It breeds in most of Europe and across the Western Palearctic. It is migratory, wintering mainly in tropical Africa.[1][3] It usually builds its nests in holes on oak trees.[4] This species practices polygyny, usually bigamy, with the male travelling large distances to acquire a second mate. The male will mate with the secondary female and then return to the primary female in order to help with aspects of child rearing, such as feeding.[2][5]
The European pied flycatcher is mainly insectivorous, although its diet also includes other arthropods. This species commonly feeds on spiders, ants, bees and similar prey.[6]
The European pied flycatcher has a very large range and population size and so it is of least concern according to the International Union for Conservation of Nature (IUCN).[1]
The European pied flycatcher is an Old World flycatcher, part of a family of insectivorous songbirds which typically feed by darting after insects.[7] The Latin word ficedula means "small fig-eating bird". The term hypoleuca comes from two Greek roots, hupo, "below", and leukos, "white".[3]
The species was described in Linnaeus's Fauna Svecica (1746), a work that was not binomial and that is therefore unavailable nomenclaturally. Later, in the tenth edition of his Systema Naturae and the next edition of Fauna Svecica (1761), Linnaeus confounded this flycatcher with the Eurasian blackcap and the whinchat.[8] To this point, the European pied flycatcher still lacked a proper valid binominal name. The species was finally named as Motacilla hypoleuca by the German naturalist Peter Simon Pallas in 1764. However, he described this species anonymously in the appendix of a sales catalogue of the collection of Adriaan Vroeg, popularly known simply as the "Adumbratiunculae" among ornithologists.[9] The authorship of the Adumbratiunculae would later be attributed to Pallas.[10] Given the initial anonymity of the publication and the inferred authorship by external evidence, the International Code of Zoological Nomenclature advocates that Pallas's name should appear enclosed in square brackets in the species' name. Thus, the correct form of the scientific name of the European pied plycatcher is Ficedula hypoleuca ([Pallas], 1764).[8]
Ficedula hypoleuca currently has four recognized subspecies: the nominate F. h. hypoleuca ([Pallas], 1764), F. h. speculigera (Bonaparte, 1850), F. h. iberiae (Witherby, 1928), and F. h. tomensis (Johansen, 1916).[8] The subspecies F. h. muscipeta (Bechstein, 1792) is currently considered synonymous with F. h. hypoleuca, but could represent an actual distinct subspecies. The name F. h. atricapilla (Linnaeus, 1766) is a junior subjective synonym of F. h. hypoleuca; and the name F. h. sibirica Khakhlov, 1915 is invalid, the correct form being F. h. tomensis (Johansen, 1916).[8]
This is a 12–13.5 centimetres (4.7–5.3 in) long bird. The breeding male is mainly black above and white below, with a large white wing patch, white tail sides and a small forehead patch. The Iberian subspecies iberiae (known as Iberian pied flycatcher) has a larger forehead patch and a pale rump. Non-breeding males, females and juveniles have the black replaced by a pale brown, and may be very difficult to distinguish from other Ficedula flycatchers, particularly the collared flycatcher, with which this species hybridizes to a limited extent.[11]
The bill is black, and has the broad but pointed shape typical of aerial insectivores. As well as taking insects in flight, this species hunts caterpillars amongst the oak foliage, and will take berries. It is therefore a much earlier spring migrant than the more aerial spotted flycatcher, and its loud rhythmic and melodious song is characteristic of oak woods in spring.
They are birds of deciduous woodlands, parks and gardens, with a preference for oak trees. They build an open nest in a tree hole, and will readily adapt to an open-fronted nest box. 4–10 eggs are laid.[4]
The very similar Atlas pied flycatcher, of the mountains of north west Africa was formerly classed as subspecies of the European pied flycatcher.
The European pied flycatcher has a very large range and population size, and is thus deemed to be of least concern by the IUCN. This species occupies areas of many different countries in Europe and northern Africa, also being present in the west Asian portion of Russia. More specifically, the nominate subspecies F. h. hypoleuca inhabits the UK, central Europe and Scandinavia, F. h. speculigera inhabits Morocco, Algeria and Tunisia, F. h. iberiae inhabits in the Iberian Peninsula, and F. h. tomensis in eastern Europe and Russia.[8] The species is noted as a vagrant species in places in other countries in Africa and South Asia, such as Sudan and Afghanistan.[1] This flycatcher typically spends winter in tropical Africa.[3][8]
The European pied flycatcher is a terrestrial bird,[1] typically inhabiting open forests, woodlands, and towns. In 2005, the European population was listed to hold 3–7 million pairs.[3]
The European pied flycatcher predominately practices a mixed mating system of monogamy and polygyny. Their mating system has also been described as successive polygyny.[5] Within the latter system, the males leave their home territory once their primary mates lays their first eggs. Males then create a second territory, presumably in order to attract a secondary female to breed. Even when they succeed at acquiring a second mate, the males typically return to the first female to exclusively provide for her and her offspring.[2] Males will sometimes care for both mates if the nests of the primary and secondary female are close together. The male may also care for both mates once the offspring of the primary female have fledged. The male bird usually does not exceed two mates, practicing bigamy. Only two cases of trigyny hve been observed.[12]
The male mating behavior has two key characteristics: desertion of the primary female and polyterritoriality. The males travel large distances, an average of 200–3,500 metres (660–11,480 ft), to find his second mate. After breeding with the secondary female, the males return to their first mate. The males of this species are polyterritorial; the males will acquire multiple nest sites to attract a female. Upon breeding with this first female, the male will procure more nesting sites, typically some distance from the site of the primary female, in order to attract a second female for mating. The males that have better success at polygyny are typically larger, older and more experienced at arriving earlier to the mating sites.[13]
The female behaviour has also been studied in depth, especially due to the fact that some females accept polygyny while others are able to maintain monogamous relationships. The first female in a polygynous relationship does not suffer much in comparison to females in monogamous situations. These primary females gain greater reproductive success because they are able to secure full-time help from the male once he returns from his search for a second mate. The second female, however, often suffers from polygyny. These females have 60% less offspring than females that are in a monogamous relationship.[14] These findings are consistent with the polygyny threshold model, which is depicted at the right. Additionally, the secondary female lays a smaller clutch which she is more likely to be able to rear on her own.
Another behavior that is relatively frequent in European pied flycatchers is the practice of extra-pair copulations (EPC). Thus, the male practicing EPC will have a group of offspring raised successfully without any parental investment on his part. The female may benefit from EPC if the second male is judged to have superior genes to the original male. Another benefit that EPC adds is that there is an increase in genetic variability. However, females are not typically very welcoming of EPC. A female that is being pursued for an EPC will either passively allow the male to copulate with her, or will resist it and risk injury due to the male's aggression.[15]
In an experiment conducted from 1948 to 1964 in the Forest of Dean in Gloucestershire, two hundred and fifty nest boxes were carefully recorded for their locations and then analyzed for their inhabitance.[16] The median breeding dispersal (the distance between successive nests) of the European pied flycatcher ranges from about 52–133 metres (171–436 ft), with the average distance between nest sites being about 45 metres (148 ft). This distance typically depended on the breeding density in each year. The study found little evidence to suggest a difference in breeding dispersal between years or between monogamous and polygynous males. As a result, the data for the separate categories could be combined. The breeding dispersal over longer distances could result in both mate fidelity as well as mate change, the latter of which occurs either while the previous mate is still alive, or following the death of the mate. The breeding dispersal distances of birds that survive more than three breeding seasons were studied, and the results showed that the site fidelity increased with more successive breeding attempts. The same long-term study also found that older European pied flycatchers, both male and female, were more likely to move shorter distances between breeding seasons than younger birds were. When mates were observed to re-establish their pair bond, they tended to occupy certain areas that were near the nest site established in the previous breeding season. In addition, female birds were less likely to return to a former breeding site following the death of, or divorce from, their former partner. When a pair divorces, the females have been observed to move greater distances away than the males. As a result, females that keep the same mates from year to year end up moving shorter distances for each mating period than those that divorce. Divorce has little influence on the likelihood of males moving away from their original nest site. The study found that males that keep the same mate do not move significantly smaller distances than males that divorce.[16]
Since most bird species exhibit monogamous mating behaviors, the polygynous behavior of the European pied flycatcher has sparked much research. There are three main hypotheses that seek to explain why females settle polygynously when it lowers their overall fitness and reproductive success compared to a monogamous relationship.[17]
The first hypothesis is the "sexy son" hypothesis which asserts that although females experience an initial reproductive loss with their first generation, the reproductive success of the second generation compensates for the initial loss. The second generation of males is thought to be privileged because it will inherit the increased mating ability, or attractiveness, from their fathers and thus will have high success in procuring mates upon maturation. Since these "sexy sons" are projected to have heightened reproductive success, the secondary female's reproductive success in turn improves.[18] Some researchers, however, have refuted this theory, stating that offspring born to secondary females suffered from poor nutrition, which resulted in shorter tarsi and lower weights than the progeny of primary and monogamous females. These phenotypic traits contribute to lesser success in mate acquisition, rejecting the "sexy son" hypothesis.[12]
The second hypothesis claims that deception from the male flycatcher explains a female's choice to mate with an already-mated male despite the relative decrease in reproductive success.[13] The deception arises from the polyterritoriality of the males, meaning that the males are able to deceive the females through the use of separate territories. This hypothesis attempts to describe why males have developed polyterritorial behavior. The typical long distances between nest sites suggest that males acquire multiple nest sites to facilitate the deception of the secondary female.[12] A study showed that females leave the male upon discovering that he is already mated, as long as she discovers this fact before laying season.[13] However, another experiment with European pied flycatchers in Norway produced results that refute the deception hypothesis.[19] The secondary female birds in their study raised larger clutches than primary females. The study also showed that deception is not an evolutionarily stable strategy for males, because secondary females would notice the frequent visits to the primary females and then elect to choose another mate. According to the deception hypothesis, already-mated males display polyterritorial behavior that increases their chances of acquiring another mate. Unmated males were shown to display mating behavior, consisting mostly of singing, at their nest site. On the other hand, already-mated males would need to disrupt their singing at their secondary territories in order to return to their primary nest. This can occur both before and after the time of their second mating.[20] As a result, it decreases the chance that females would be deceived, leading to an evolutionarily unstable strategy.[21]
The third hypothesis asserts that females settle for polygyny because it is hard to find unmated males.[19][22] This theory assumes that there is aggression between females to find mates and asserts that polyterritoriality actually helps to alleviate this aggression, allowing the second female a place to settle and breed peacefully.[23] Although the deception hypothesis suggests that males are more successful at farther secondary territories because they can hide their marital status, the female-female aggression suggests that males occupy distant secondary territories to reduce aggression between the primary and secondary females. Primary females display aggression and prevent other females from settling near the initial nest to ensure that they acquire the male parental care.[24] Primary females were seen in experiments to visit the second territory and behave aggressively towards the secondary female. The number of such visits decreased with increasing distance between the nests. It is also important for the primary female to be able to detect an intruding female as soon as possible, because the longer the intruder has been present in a territory, the more difficult it will be to evict the female. Female flycatchers are known to have the capacity to identify the songs of their own mates and check if they establish a second territory. The primary male was also shown to spend less time in the second territories during incubation periods than before they acquired a secondary mate, especially with greater distances between the two territories.[25][26]
F. hypoleuca (pied flycatcher) and F. albicollis (collared flycatcher) are speciating from each other, providing evidence for speciation by reinforcement (selection against hybrid).[27] The two species diverged less than two million years ago, which is considered recent on the time scale of evolution.[28] Still, hybrids of the two species already suffer from low fertility [29][30] and metabolic dysfunction.[31] It was also believed that sexual selection causes reinforcement and pied flycatcher evolved different colouration in sympatry versus allopatry to prevent hybridization, though some evidence suggests heterospecific competition instead of reinforcement as the underlying mechanism.[32] Mating choice tests of the species find that females of both species choose conspecific males in sympatry, but heterospecific males in allopatry [33] (see conspecific song preference). The patterns could suggest mimicry, driven by interspecific competition; [34] however, song divergence has been detected that shows a similar pattern to the mating preferences.[35]
Studies were also done to examine the amount of contribution the male European pied flycatcher provided in parental care as well as why some females choose to mate with mated males.[36] When older and younger monogamous males were compared, there was no difference in feeding rate between each nest. When females were studied, scientists found that monogamous and primary females benefited significantly more from the male in terms of parental care than polygynous females did. The latter group could only partially compensate for the absence of a male, leading to secondary females and widows raising fewer offspring than the monogamous pairs did. In the study, differences in mates and the qualities of the territories were slight and therefore not considered, since they lead to no advantages for females to choose between the territories belonging to monogamous or already-mated males. The results of the study suggest that the males can control multiple territories and are thus able to deceive females into accepting polygyny, while the females do not have enough time to discover the marital status of the males.
In terms of male parental care to clutches, the rate of male incubation feeding was directly related to the physical condition of the males, and negatively correlated with the ambient temperature. Polygynously mated females also received far less feeds than monogamously mated females, despite having no difference in the food delivery rates by the male. The reduction in delivery rate to the polygynously mated females led to a negative effect on their incubation efficiency, because the females needed to spend more time away from the nest acquiring food. This also prolonged the incubation period when compared to monogamous females. The male feeding behavior is related to the reproductive value as represented by the nests, as well as to the costs and benefits of incubation feeding.[37]
The main diet of the European pied flycatcher is insects. In fact, their name comes from their habit of catching flying insects, but they also catch insects or arthropods from tree trunks, branches, or from the ground.[38] Studies have found that the majority of food catches were made from the ground. It was also found that airborne prey were captured more during the early part of the season (May to June) than in the later part (August to September); the converse trend appeared in prey taken from trees. There are also many overlaps in the foraging techniques with the collared flycatcher, the spotted flycatcher, and the common redstart.[6][39]
Courtship feeding, or incubation feeding, occurs when the male feeds the female in the pairing, egglaying stages, and incubation. An interpretation of this behavior is that it strengthens the pair bond between mates.[40]
The diet of the European pied flycatcher is composed nearly entirely of insects. One study analyzed the stomach contents of birds during the breeding season and found that ants, bees, wasps and beetles made up the main diet.[6] Ants made up approximately 25% of the diet.[41] Food given to nestlings include spiders, butterflies, moths, flies, mosquitoes, ants, bees, wasps, and beetles. For Lepidoptera and Hymenoptera, larvae appear to be consumed more than adult insects; the opposite is true for other insect orders.[39] There is also variation between the proportions of larvae and adult insects between different habitats. Nestlings were also found to consume more spiders, butterfly, and moth larvae, while adult flycatchers consume more ants.[6]
It has on average decreased in population by 25% within the last 25 years. It has ceased to breed in several parts of its former range within Britain. It is a very rare and irregular breeder in Ireland, with only one or two pairs recorded as breeding in most years.[42] Records of its location can be found on that National Biodiversity Network.[43] In the Netherlands it have declined by 90% due to nestlings peaks mistiming.[44]
They breed in upland broadleaf woodland. This means that in Britain they are limited due to geography to the North and West. They prefer mature oak woodland, but also breed in mature upland ash and birch woods.
They require very high horizontal visibility - a low abundance of shrub and understorey, but with high proportion of moss and grass. Grazing needs to be managed to maintain this open character, but also allow the occasional replacement trees.
They will sometimes use mature open conifer woodland where natural tree holes occur. Generally they prefer trees that have tree holes, i.e. dead trees, or dead limbs on healthy trees. They also like lichens that grow on trees.
The Forestry Commission offers grants under a scheme called England's Woodland Improvement Grant (EWIG); as does Natural England's Environmental Stewardship Scheme.
The European pied flycatcher (Ficedula hypoleuca) is a small passerine bird in the Old World flycatcher family. One of the four species of Western Palearctic black-and-white flycatchers, it hybridizes to a limited extent with the collared flycatcher. It breeds in most of Europe and across the Western Palearctic. It is migratory, wintering mainly in tropical Africa. It usually builds its nests in holes on oak trees. This species practices polygyny, usually bigamy, with the male travelling large distances to acquire a second mate. The male will mate with the secondary female and then return to the primary female in order to help with aspects of child rearing, such as feeding.
The European pied flycatcher is mainly insectivorous, although its diet also includes other arthropods. This species commonly feeds on spiders, ants, bees and similar prey.
The European pied flycatcher has a very large range and population size and so it is of least concern according to the International Union for Conservation of Nature (IUCN).